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Abstract 

In this study, we investigated the spatial distribution of an earthworm community 

together with the heterogeneity of selected soil properties in a gallery forest (GF) of 

the Colombian “Llanos”. We performed fine-scale spatial variability by intensively 

sampling 100 points distributed in the nodes of a regular grid with 5 m inter-sample 

distance. Non-parametric statistics were used and included SADIE analysis and partial 

Mantel test, in addition to geostatistics (semi-variograms) and correlogram 

computation. Our results indicated that the spatial distribution of earthworms was 

characterized by areas of presence (patches) and absence (gaps), although the general 

pattern was random at the scale of this study (<5 m), while soil physico-chemical 

characteristics showed a clumped spatial distribution. Contrary to previous results 

reported for the nearby savanna, a significant spatial association was found for two 

competing endogeic species Andiodrilus sp. and Glossodrilus sp. in the GF. Semi-

variograms of soil environmental factors were adjusted to model families most 

commonly used (spherical and linear), and correlograms for earthworms showed 

significant positive and negative spatial autocorrelation for lag distances <15 m and 

>30 m, respectively. Partial Mantel test revealed specific significant relationships 

between soil variables and some species. The earthworm community of the GF 

displayed a random structure in a spatially clumped soil environment, and our results 

suggested that spatial distribution observed for some species could be the result of 

preferential selection of soil environmental factors. In other words, soil heterogeneity 

contributed to the formation of population patches for some earthworm species. The 

variability of suitable sites (resource availability patchiness) exerted an influence in 

the spatial distribution of earthworms at the scale used in this study, and we identified 

the spatial scale at which both environmental heterogeneity could influence and 

express earthworm impact on soil properties. 

 

Key words: Earthworms; Spatial Distribution; Variograms; Correlograms; Mantel 

Test; Soil Fauna; Community Assembly; Gallery Forest. 



3 

 

1. Introduction 

The spatial distribution of earthworms is generally clumped and characterized by 

an alternation of high- and low-density population patches of several tens of meters 

(Jiménez et al. 2001; Nuutinen et al., 1998; Rossi and Nuutinen, 2004), although 

regular patterns have also been described at short scales (Thomas et al., 2008). The 

spatial segregation of these discrete patches have been interpreted as the result of 

environmental factors, i.e., plant cover and soil properties, and internal population 

processes, i.e., reproduction rates and dispersal mode (Robertson and Freckman, 1995; 

Rossi et al., 1997; Rossi and Quénehérvé, 1998; Decaëns and Rossi, 2001; Jiménez et 

al., 2001; Ettema and Wardle, 2002; Whalen, 2004; Jiménez et al., 2006; Barot et al., 

2007; Matthieu et al., 2010). Long-term field studies on earthworm population 

dynamics and dispersal modes are not abundant and this restricts generalizations about 

the mechanisms explaining the observed population aggregated distribution.  

Natural communities are assembled within the boundaries imposed by the abiotic 

environmental requirements and the interactions between species (Beleya and 

Lancaster 1999). Process of community assembly implies that a series of abiotic and 

biotic filters sift species out of a regional pool (Weiher and Keddy, 1995). In niche 

theory, competition is considered as one of the driving force structuring species 

assemblages in communities. By contrast, community patterns can also be generated 

by random processes according to neutral theory (Gotelli and Ellison, 2002). The latter 

has been reconciled with niche concepts under theoretical frameworks (Leibold and 

McPeek, 2006). Regarding earthworms, inter-specific competition has been 
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demonstrated in shaping distribution of assemblage patches in tropical savannas 

(Jiménez and Rossi, 2006; Jiménez et al., 2006; Decaens et al., 2009), where species 

pairs showed significant spatial segregation usually associated with a high degree of 

niche overlap. 

The influence of soil spatial variability in shaping population patches of earthworm 

assemblages is poorly understood. Despite its importance, understanding the driving 

factors that explain the spatial structure of soil communities continues to be a black-

box in spatial ecology studies, as these have been overlooked when compared to 

studies on above-ground biota (Ettema and Wardle, 2002). Several authors have 

demonstrated that earthworm communities are organised in mosaics of patches 

characterised by dominant species assemblage with detectable effects on soil 

properties (Decaëns and Rossi, 2001; Rossi, 2003b). Moreover, these patterns can be 

significantly stable at a temporal scale of few years (Jiménez et al., 2006). Species 

within natural communities show differences in resource use and ecological 

requirements. Therefore, earthworm species might be deterministically shaped by such 

spatial variability of soil properties, if a spatial structure of soil resources is observed. 

Spatial analysis has proven to be an important tool to explain the patterns and 

mechanisms behind the structuring of population patches in soil community studies. 

Specific and spatially explicit designed surveys are needed and these are not abundant 

in the literature. Consequently, new data sets are required that are related to the scale 

and magnitude of the spatial patterning and emphasize the relationship between the 

spatial patterning of soil communities and usable resources in the soil. A specific 
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detailed spatially explicit sampling design would allow us to address the question of 

soil environmental heterogeneity in structuring earthworm patches. In this study, our 

objective was to unravel the spatial pattern of soil organisms at short scales, and its 

relationship with soil environmental factors in order to test whether soil environmental 

variability was responsible for the patterns observed. We hypothesized that the spatial 

distribution of the earthworm community present in a gallery forest (GF) of the 

Colombian “Llanos” was structured by the aggregated pattern of soil properties at 

short spatial scales , i.e. <50 m. Our approach was based in the use of rigorous spatial 

statistics to unveil the mechanisms explaining earthworm species-environment 

relationships, and also to infer possible mechanisms of inter-specific competition. 

2. Materials and methods 

2.1. Study site 

Fieldwork was carried out at the former Carimagua research station (CORPOICA-

CIAT agreement) in the well-drained isohyperthermic savannas of the Colombian 

“Llanos” (4  37’ N, 71 19’ W, 150 m a.s.l.). The study area is a young alluvial plain 

consisting of deposits of Pleistocene and Holocene sediments of Andean origin. 

Gallery forests, with a similar floristic composition to the Amazonian rainforest follow 

a dense braided drainage network of rivers and water flows (“caños”) toward the large 

Orinoco catchment. The climate in the area is sub-humid tropical and follows a 

unimodal regime, with a marked dry season from December to March, and a yearly 

average precipitation and temperature of 2,280 mm and 26 °C, respectively. The main 

soil types in the area are Oxisols in the upland savannas and Ultisols in the lowlands, 



6 

 

with high acidity, i.e. pH [H2O] = 4.5, Al saturation >90%, and low cation exchange 

capacity (CEC) (CIAT data). 

Sampling was done in a gallery forest located in “La Reserva” bordering the 

Carimagua Lake. This is a secondary forest with several abundant tree species like 

Dendropanax arboreum (“Cambusil”, Araliaceae), Enterolobium spp. (“caracaro”, 

Leguminosae), Ficus spp. (Moraceae), Jacaranda copaia (“Machaco”, Bignoniaceae), 

Copernicia tectorum (“Palmiche”, Caesalpiniaceae), and Cecropia sp. (“Yarumo”, 

Cecropiaceae). Shore vegetation (“Morichal”) includes Mauritia flexuosa, M. minor 

and Mauritiella (“Moriche”, Palmaceae). Other plant species reported in “La Reserva” 

gallery forest are: Attalea maripa (“Palma Cucurita”, Palmaceae), Nectandra 

membranacea (Sw.) Griseb. (“Laurel”, Lauraceae), Didymopanax morototoni (Aubl.) 

Decne & Planch (“Tórtolo”, “Yagrumo”, Araliaceae), Virola sp. (“Cuajo”, 

Myristicaceae), and Hymenaea courbaril (“Algarrobo”, Caesalpiniaceae) (Ramia 

1974). Local names can be consulted in 

http://www.biovirtual.unal.edu.co/diccionario/consultar.html). 

2.2. Earthworms and soil sampling 

We assessed fine-scale spatial variability of earthworms and soil through intensive 

sampling in the nodes of a 10x10 points regular grid with 5 m inter-sample distance. 

Earthworm species were taken from 25x25 cm
2
 down to 20 cm depth soil pits. We 

selected a 5 m inter-sample distance based on previous results from sampling 

earthworm assemblages in a savanna environment, where inter-sampling distance was 

10 m (Decaëns and Rossi, 2001; Jiménez et al., 2001; 2006). The number of 

http://www.biovirtual.unal.edu.co/diccionario/consultar.html
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individuals for each species was annotated and earthworms were released back to the 

soil. Prior to pit excavation litter was hand sorted from 1m
2
 quadrats and conserved in 

plastic bags. 

We performed a very detailed sampling effort for soil environmental variables. 

Four soil cores were taken in the four sides of the dug pit at each sampling point. 

1. Soil core 1: Bulk density was determined with the core method (soil dry mass 

per volume) using a 5x5 cm steel cylinder; soil water content (soil water per 

volume, and soil water per dry mass) were determined gravimetrically.  

2. Soil core 2: Soil organic C (SOC) determination in the 0-5 and 5-10 cm. The 

soil was oven dried at 75 °C for 48 h and finely grounded. SOC concentration 

was determined with the colorimetric method after acid digestion in H2SO4, 

and the Kjeldahl method was used for total N. Available P was determined 

with the Bray-II extraction method. 

3. Soil core 3: Steel cylinders of 15 cm depth and 10 cm diam. were taken to 

asses size-class aggregate distribution. Approximately, 100 g of air-dried soil 

was used for standard dry-sieving through a sieve column of 4.75, 2.0, 1.0, 0.5 

and 0.250 mm for 30 min in a mechanical shaker. 

4. Soil core 4: A 15x10 cm metal cylinder was used for assessment of root length 

and biomass. In the lab the soil core was dispersed in water and poured through 

a set of sieves of 2 and 0.5 mm. Fine (0.5-2 mm) and coarse roots (>2 mm) 

were hand-picked from the sieve contents. 
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Finally, soil structure was quantified indirectly by measuring soil resistance to 

penetration. At each sampling point three readings were recorded and graphed on 

paper cards with a penetrometer. Soil penetration resistance was determined when 

topsoil moisture content was close to field capacity (pF 2.8 = 38% v/v). 

2.3. Spatial distribution of earthworms 

2.3.1. SADIE analysis (cluster and gap identification) 

The degree of species aggregation was assessed with the analysis of their spatial 

distribution in the surveyed area (45x45 m
2
). Count data of earthworms (individuals 

per sampling point) were analysed with the Spatial Analysis Distance IndicEs 

(SADIE) red-blue methodology (Perry, 1998; Perry et al., 1999). This spatial analysis 

is specifically addressed to handle count data collected at spatially-referenced 

sampling units. A global index of aggregation, namely Ia is computed and its value 

indicates the type of spatial distribution, e.g., random if the Ia = 1, aggregated if Ia >1, 

and regular if Ia <1 (Perry et al. 1999). 

Later, a cluster index is computed for each sampling point. A cluster is defined 

here as an area of either relatively high (patch) or low (gap) mean density. This local 

cluster index is positive (vi) or negative (vj) for a sample that has more or less 

individuals, respectively, than expected by the null hypothesis of complete spatial 

randomness. These indices permit a direct identification of samples that contribute to 

patches or gaps or that correspond to areas where density displays no significant 

departure from the average value across the study plot. The individual significance of 
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each sampling unit is assessed using the heuristic thresholds of 1.5 and –1.5 (see Perry 

et al., 1999 for a complete description of the method). 

Once the clusters were isolated and determined (patch, gap or non significant 

values), they were described using landscape metrics (Forman, 1995). A patch or gap 

consists of at least one sample location where the  vi  or vj  index is significant. A 

single cluster is formed by adjacent sample locations having significant index values. 

Clusters were described as follows: 

NC = number of clusters of a given type (i.e. patch, gap or random), 

PLAND = the percentage of the plot area included in the corresponding cluster 

type, and 

LCI = the percentage of the plot area comprised by the largest cluster of each 

type. 

Finally, an association index was computed to test for the spatial association or 

dissociation between species’ pairs (Perry and Dixon, 2002). The local association 

indices calculated from their individual sampling-unit clustering indices are correlated 

between species’ pairs. The observed value of the association index is tested against 

the null hypothesis of complete spatial independence of counts, which is based on 

random permutations (Perry and Dixon, 2002). SADIE statistics was performed with 

the available software kindly provided by Dr. J. Perry (Rothamsted Research group, 

England). Graphical maps of patches and gaps were depicted with Surfer v.6.04 

(Golden Software Inc., Colorado, USA). 
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2.3.2. Geostatistics and partial Mantel test 

Soil organism horizontal distribution is usually clumped or aggregated. The degree 

of autocorrelation is assessed with the semi-variogram, the function describing the 

spatial pattern of any variable that relates the semi-variance γ(h) between two variables 

with increasing distance (Cressi, 1993) using the algorithm: 

(h)

1i

2
h)Z()Z(hh

M

ii xxM
2

1
 

, where M(h) is the number of sample pairs at each distance interval h (“lag”) 

and Z(xi) and Z(xi + h) the values of the variable at any two places separated by 

a lag h. 

The more alike the values separated by a given distance, the lower the semi-

variance. In the presence of spatial autocorrelation, the lag distance is increased until 

γ(h) reaches a maximum value called the “sill” variance for a given distance interval 

(the range, a). The range defines the limit of spatial dependence of the variable 

concerned, i.e., the maximum distance at which pairs of observations influence each 

other. A third parameter in variogram estimation is the nugget effect, i.e., the variance 

within sampling units, and represents unexplained or random variance, which is often 

attributed to measurement error or variability at a scale smaller than the sampling scale 

(Cressi, 1993). 

Estimated values of  γ(h)  are adjusted to a several authorized theoretical models in 

the semi-variogram (McBratney and Webster, 1986; Rossi et al., 1992). The most 
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commonly used models are the spherical, Gaussian and exponential, which assume 

that there is no spatial dependence for distances larger than the range. In this study the 

number of sampling units was large enough to reliably estimate semi-variograms 

(Webster and Oliver, 1982). The semi-variogram is further used to estimate values of 

the variables at non-sampled points by “kriging” interpolation (Cressi, 1993). The 

Gstat software was used to compute the variograms and kriging, and Sigmaplot 11.0 

(© Systat software Inc., 2008) for depicting contour maps after kriging procedure. 

When analysing spatial data sets ignoring spatial autocorrelation can give 

confusing results (Beale et al., 2010). We performed correlogram analysis with the 

Moran’s I index to assess the significance of the spatial pattern of earthworms and soil 

variables. The correlogram is the function on which the spatial pattern of a given 

variable and the scale at which it expresses is represented (Sokal and Oden, 1978). 

Values of the Moran’s I index are plotted in the correlogram to show the changes of 

autocorrelation coefficient with increasing distance classes and its significance (Rossi, 

1997; Overmars et al., 2003). They can be used to quantify the spatial dependency per 

distance class or lag. Data were allocated to 10 distance classes for convenience with 

5.8 m lag distance, slightly higher than the inter-sample distance used. For the 

computation of the correlogram a minimum of 50 pairs of points or higher were taken 

into account in each distance class. The overall statistical significance of the 

correlogram was performed with a Bonferroni corrected probability procedure (Oden, 

1984). The corrected p* was ’= /k, with k the number of distance classes and 

<0.05 the global significance level (Oden, 1984). The correlogram is statistically 
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significant when at least one coefficient is significant at the corrected p* of 0.05/10 = 

0.005 (Cooper, 1968). Homoscedasticity of data frequency distribution was tested 

with a Kolmogorov-Smirnov test, and a Box-Cox transformation was used to reduce 

the asymmetry of the frequency distribution when normality assumption was not 

achieved (Sokal and Rohlf, 1995). The software “PASSaGE” v.2 was used for the 

computation of Moran’s I spatial autocorrelation index. 

The relationship between the spatial pattern of earthworm density and soil 

environmental variables was assessed with the partial Mantel test (Mantel, 1967) to 

search for the relationship between two distance matrices that reflect the spatial 

structure of two given variables (Legendre and Fortin, 1989). The position of 

sampling points may determine false or spurious relationships, simply due to the 

autocorrelation of variables, i.e. to their spatial location in the space. The partial 

Mantel test allows testing for the correlation between both matrices while controlling 

the effect of the spatial position by a third space distance matrix (Smouse et al., 1986; 

Legendre, 1993) which represents the spatial sampling coordinates (Legendre and 

Troussellier, 1988). We used a permutation test (10,000 permutations) to detect the 

statistical significance of the partial Mantel test at <0.05 level (Legendre and Fortin, 

1989). 

2.4. Probability level correction: False discovery rate procedure 

A correction to probability level was done by using the false discovery rate (FDR) 

procedure for multiple comparisons (Benjamini and Hochberg, 1995) to adjust the 

<0.05 significant level. The rationale behind this procedure is that the power of 
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multiple tests is optimized while controlling for the proportion of significant results 

that could actually be Type I errors (García, 2004). The  p  values from the individual 

tests are used to perform the corrections and search for significant differences at the 

corrected probability level. The comparison starts with the highest  p  value obtained 

from the individual tests and then each  p  is checked until the first  p  that meets the 

requirement (Benjamini and Hochberg, 1995). Final  p  value corresponded to the 

following correction: 

P(i)  ( /m)*i 

, where  m  is the number of tests and  i  is the test ranked in ascending order, i.e. P(1) 

….. P(m), and H(i) denotes the null hypothesis corresponding to P(i).  

3. Results 

3.1. Earthworm community structure 

In the gallery forest 688 earthworms were recorded representing the main 

ecological categories and belonging to seven undescribed species all new to science 

(Table 1). Some of them are also normally present in the natural savanna while others 

were only restricted to this ecosystem (J. Jiménez, unpubl.) Two epigeic species 

differing in size were recorded: Aymara sp., which is also present in the savanna, and 

a large antero-dorsal dark-red colored earthworm (new genus sp.1) which is only 

restricted to GF. Glossodrilus sp. and Andiodrilus sp. are two medium-sized endogeic 

species that are also present in the savanna and their abundance was relatively high, 

while only one individual was recorded for Andiorrhinus sp. from all the 100 sampling 
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points (Table 1). Martiodrilus sp., which is also normally found in the savanna, is a 

large anecic species. The new genus 2 (Ocnerodrilidae) and Martiodrilus sp. were the 

most abundant species, the former being the smallest species and normally found in 

sites of high organic content, like in-soil faeces produced by other earthworm species 

(Jiménez et al., 1998). 

3.2. Spatial analysis: earthworm clusters 

The SADIE analysis revealed that earthworm spatial distribution followed a 

random distribution in the sampled area of the GF, except for Aymara sp., which had a 

significant Ia index (Table 2). On the other hand, this analysis suggested the presence 

of small patches and gaps of varying size in all species. Clusters of earthworm 

distribution occupied different areas within the sampled plot, the size of which varied 

significantly among species. The number of clusters (i.e. patches or gaps) obtained for 

all earthworm species ranged from 2 to 7 (Table 2), and the corresponding graphical 

representation is depicted in Figure 2. 

SADIE association index between earthworm species pairs indicated a significant 

positive species’ association between Andiodrilus sp. – Glossodrilus sp. (r = 0.2883; P 

= 0.0065), and Martiodrilus sp. – new genus 2 (r = 0.2650; P = 0.0036), while 

significant dissociation (r = -0.2013; P = 0.9870) was observed for Aymara sp. – 

Glossodrilus sp. (two-tailed probability levels of <0.025 and >0.975, respectively at  

= 5%). Non significant trend towards dissociation was observed for Aymara sp. with 

Andiodrilus sp., new genus 1, and new genus 2. On the other hand, the coefficient of 

association indicated a non-significant tendency towards association for Andiodrilus 
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sp. – new genus 1, Glossodrilus sp. – new genus 1, and Glossodrilus sp. – new genus 

2. 

3.3. Geostatistical analysis and partial Mantel test 

The semi-variograms for SOC (Figure 2a), N concentration, P content at 0-5 cm 

(Figure 2b), C:N, FiRL, FiRW, CoRL and soil aggregates were adjusted to the 

spherical model, while P content at 5-10 cm, penetration resistance and hydraulic 

conductivity (Figure 2c) were adjusted to the linear type (Table 3). The range of the 

spatial structure varied from 4 m to ca. 400 m for SOC at 5-10 cm and CoRL, 

respectively. No spatial structure was observed for some variables, i.e., the variance 

fluctuated around the nugget variance with increasing distance for moisture content, 

bulk density, proneness to compaction (Figure 2d) and CoRW (Table 3). 

The correlograms calculated for earthworm species were significant except for 

Glossodrilus sp. at the Bonferroni corrected P (Table 4). Positive spatial 

autocorrelation was observed at a lag distance of <6 m for Aymara sp. and new genus 

1, while it was 8 m for new genus 2, from 23 to 35 m for Andiodrilus sp. and 49 m for 

Martiodrilus sp. On the other hand, negative spatial autocorrelation was observed for 

Martiodrilus sp. and new genus 2 at ca. 26 and 31 m, respectively, while it was 37 m 

for Andiodrilus sp. (Table 4). 

Finally, the correlograms computed for soil variables were significant (Table 5), 

and a common pattern was observed: positive and negative spatial autocorrelation at 

<20 m and >30 m lag distance, respectively (Table 5). The significance of the spatial 
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pattern of soil variables revealed by the correlograms indicated a general pattern: for 

nutrient-related soil variables, especially P and C:N5-10, Moran’s I index yielded 

positive spatial autocorrelation for lag distances up to 23 m and negative for 35 m 

onwards. Spatial autocorrelation for litter was positive for distance lags 1 and 6, and 

negative for distance lags 4 and 8, what could be an indication of the high 

heterogeneity in plant cover in the survey plot.  

A significant correlation was observed between the spatial distribution of soil 

variables and earthworms with partial Mantel test (Table 6). For example, the 

relationship between new genus 1 and SOC concentration at 0-5 cm (as revealed by 

CoIA) was significant. In the case of Andiodrilus sp. the relationship with bulk density 

was not significant at the corrected probability level. Andiodrilus sp. only showed a 

negative significant correlation with soil physical properties like resistance to 

penetration and the amount of 1-2 mm size-class aggregates (Table 6). On the 

contrary, a clear correlation was observed between Aymara sp. and microaggregates 

(<0.250 mm) and the length of fine roots. A negative significant correlation with C 

and C:N ratio at 5-10 cm soil depth, BD and proneness to compaction was observed 

for new genus 1. On the contrary, a positive relationship was observed for C and C:N 

ratio in the 0-5 cm depth and hydraulic conductivity. Glossodrilus sp. and new Genus 

2 were negatively and positively correlated with aggregates ranging from 2 to 5 mm 

and the C:N ratio at 5-10 cm depth, respectively. Finally, no significant correlation 

was observed between soil environmental variables and the spatial distribution of 

Martiodrilus sp. (Table 6). 
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4. Discussion 

4.1. Scale and significance of earthworm short-range structures  

Earthworm species displayed a patchy distribution with different number of 

clusters and gaps of varying size. The area covered by significant clusters and gaps 

was small, and clusters map also revealed that earthworms occurred in areas where 

clustering was not significantly different from randomness. The resulting general 

pattern identified with SADIE analysis was random, except for Aymara sp. In general, 

few studies have dealt with small-scale spatial patterns in earthworm populations. For 

instance, Rossi (2003a) showed that earthworm populations were highly 

autocorrelated at scales of less than 10 m, with patches of endogeic earthworms from 2 

to 8 m diameter in an African savanna. In our study, the size of patches was smaller, 

i.e. 5-15 m, than those reported for the nearby savanna, between 30-40 m (Decaëns 

and Rossi, 2001; Jiménez et al., 2001; Jiménez and Rossi, 2006). SADIE analysis has 

been successfully used in studies with beetles (Blackshaw and Vernon, 2006) and 

termites (Donovan et al., 2007). 

Different species associations were found in the GF compared to results obtained 

in the nearby savanna. The negative association index computed for Glossodrilus sp. 

and Aymara sp. in the GF might imply a process of inter-specific competition between 

both species, while Andiodrilus sp. and Glossodrilus sp. which were demonstrated to 

be competing species in the savanna (Jiménez and Rossi, 2006; Jiménez et al. 2006) 

seemed not to be in competition in the GF, although further research is needed. Soil 

heterogeneity might have allowed spatial co-existence between competing species. 
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Negative associations between species pairs may arise from either heterogeneity of 

environmental factors or stochastic processes as reported in studies with ant 

communities (Ribas and Schroereder, 2002). 

The size of population patches at the time of sampling, as indicated by the 

correlogram analysis and its significance, was smaller for epigeic than for endogeic 

and anecic species within the community. The fact that epigeic species tended to be 

more aggregated at shorter distances than endogeic and anecic species could be the 

result of low population density at the plot scale, high reproduction rates, short life 

cycle (annual), and r-strategies (high production of cocoons), which are characteristic 

life history traits of epigeic species (Lavelle, 1981). 

4.2. Soil environmental variability and spatial distribution of earthworm species 

The spatial pattern of soil properties at the scale of our study ranged from a few 

meters to hundreds of meters, depending on the soil parameter considered. Soil 

forming factors like parent material, climate, vegetation, topography, and biological 

activity can be responsible for the spatial variability of soil physical and chemical 

properties. In our study, it is worth noticeable that the range of soil nutrient-related 

properties was <10 m, whereas that observed for soil physical properties was several 

tens of meters (Table 5). It was also worth pointing out that the correlogram for SOC 

concentration at 0-5 cm depth was not significant, although positive spatial 

autocorrelation was found at distance lag of <5m, and negative above 50 m. 
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The role of abiotic factors in shaping communities and species preference for 

different environmental conditions has been demonstrated for several soil taxa by 

several authors (Jackson, 1984; Dunson and Travis, 1991; Morrison, 1996; Ribas and 

Schoereder, 2002). The spatial distribution of earthworms was partly the result of 

species’ responses to soil environmental heterogeneity. Our results indicated the 

existence of soil environmental heterogeneity that was expressed at several scales. In 

the computed variograms for soil variables, the presence of different sills and ranges 

clearly revealed spatially nested structures. Plant composition and cover was highly 

heterogeneous, and a diverse plant community produces litter of different quality and 

quantity resulting in higher resource heterogeneity compared with the herbaceous 

savanna. Different plant species are likely to support important levels of heterogeneity 

of belowground properties (Wardle, 2002). Soil properties were patchily distributed 

and the spatial scale at which both environmental heterogeneity and species influence 

on soil, i.e., the “functional domain” (sensu Lavelle, 1997) was detected. At larger 

scales factors affecting the spatial distribution of soil organisms are gradients in SOM 

and vegetation structure (Ettema and Wardle, 2002), while at shorter scales (<10 m) 

earthworm spatial distribution could be influenced by local factors like plant 

characteristics, soil local conditions (moisture) and micro-topography. We can thus 

hypothesize that the short-range spatial structures observed in earthworm populations 

was the result of local environmental variation, such as root architecture or small scale 

spatial patterns of the above-ground community, the so-called “single-tree effect” 

(Wardle and Lavelle, 1997). 
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Non-random species’ spatial patterns may also arise from habitat heterogeneity 

(Bell, 2005). In our study, earthworm spatial distribution was environmentally 

controlled by spatially distributed soil properties for several species, i.e., there was a 

spatial dependence. Discrete earthworm population patches were related to specific 

soil properties’ zones within the surveyed plot. Moreover, the relationship seemed to 

be species-specific, i.e., the Mantel test revealed that certain soil variables were 

significantly related with only one species, except the C:N ratio (5-10 cm) and the 

percentage of 1-2 mm size-class aggregates. Patches of new genus 1 were encountered 

in areas of high SOC and N concentration in the topsoil (0-5 cm), and negatively 

correlated with sites of high soil bulk density and compaction. This might be an 

indication of preferential resource exploitation of this epigeic species for high organic 

content areas. Another example is provided by new genus 2, which is a small endogeic 

earthworm that was positively spatially correlated with areas of high C:N ratio (5-10 

cm). In the nearby savanna this species was normally found feeding into cast-filled 

burrows of the anecic Martiodrilus (Jiménez et al., 1998). This supports the idea that 

species presence is linked to environmental factors at very short scales, and not only as 

a result of internal population processes. 

By contrast, patches of Andiodrilus sp. were generally established in areas of high 

soil bulk density and compaction, although not significantly. Endogeic earthworms are 

characterized by their effects on soil structure (Blanchart et al., 1997), and excessive 

cast deposition in Amazonian pastures by the pantropical earthworm Pontoscolex 

corethrurus (Glossocolecidae) lead to soil compaction problems and plant productivity 

decrease due to reduced water infiltration (Chauvel et al., 1999). In our study, the 
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reported spatial distribution of Andiodrilus sp. and its relation with areas of high soil 

bulk density and compaction suggests an impact on soil structure at very short-scales. 

In other words, bulk density would tend to increase in the patches of Andiodrilus sp. 

due to compact dejections released in the surrounding soil and thus contributing to 

existing soil heterogeneity. 

5. Concluding remarks (new) 

Our study clearly demonstrated that the earthworm community was randomly 

distributed at short spatial scales, even though small patches of varying population 

density were detected in the surveyed plot. The specific spatially designed sampling 

protocol used in this study, an inter-sample distance of 5 m, allowed us to reveal short-

scale clusters in earthworm spatial distribution. In a spatially heterogeneous 

environment where resources used by the earthworm community follow a clumped 

distribution, population of species’ assemblages were distributed in patches. Even in 

the presence of high resource availability sites earthworm species showed positive 

autocorrelation at short spatial scales, while it was negative at larger scales. 

The analysis performed was relevant to unveil the influence of environmental 

factors in shaping short-scale earthworm patches, and the spatial relationship between 

soil properties and earthworms was significantly specific. Spatial segregation of 

competitive species pairs’ revealed in the savanna, i.e. Andiodrilus sp. and 

Glossodrilus sp., seemed to be otherwise allowed in the GF. The reason could be 

related to the existence of a less-constrained environment with large resource 

availability, and this also resulted in random spatial distribution of the earthworm 
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community. The resource availability patchiness exerted an influence in the spatial 

distribution of new genus 1 at the scale used in this study. Besides, the spatial 

variability of soil physical properties was the result of the activity of Andiodrilus sp. 

As a consequence, soil environmental heterogeneity and species influence on certain 

soil properties explained the spatial patterns observed and played a key role in 

structuring earthworm clusters at short scales in the GF. Spatially structured 

communities of soil organisms may suggest that some species respond to the spatial 

variability of soil resources, although further studies are required to quantify the size 

and dynamics of patches of earthworms in different ecosystems at a global scale. 
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Table 1 

Species Family 
Ecological 

category
1
 

Pigmentation 
Size 

(mm) 

Weight
2
 

(g.f.w.) 
Density 

    Length Ø  Mean SE
3
 Kurt

3
 Skew

3
 

Andiodrilus sp. Glossoscolecidae Endogeic No 109.0 4.4   1.38 (22)   3.1 0.7   20.8   3.92 

Andiorrhinus sp. Glossoscolecidae Endo-anecic Pink-coloured antero-

dorsal 

188.0 7.6   7.10 (10)   0.1 0.1 100 10 

Aymara sp. Glossoscolecidae Epigeic Dark-red dorsal   58.1 1.5   0.06 (15)   6.5 1.3   15.9   3.5 

New genus 1 Octochaetidae Epigeic Dark-green dorsal 117.9 3.8   0.69 (18)   9.5 5.1   75.6   8.4 

Glossodrilus sp. Glossoscolecidae Endogeic No   83.9 1.5   0.10 (13)   8.5 1.4     4.0   2.1 

Martiodrilus sp. Glossoscolecidae Anecic Dark-grey antero dorsal 194.3 9.3 11.2 (29) 10.3 1.4     2.5   1.7 

New genus 2 Ocnerodrilidae Endogeic No   22.8 0.7   0.006 (157) 24.0 2.6     4.3   1.7 

1 
After Lavelle, 1981. 

2
 Average adult biometric data; g.f.w. = grams fresh weight (unvoided gut). Number of observations within parentheses. 

3
 SE = Standard error; Kurt = Kurtosis; Skew = Skewness. 
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Table 2 

  SADIE  Local clusters Spatial clustering characteristics  

Species  Ia  vj  vi  Type Significance NC PLAND(%) LCI(%) 

Andiodrilus sp.  1.097  -1.097  1.111  Gap  NS 6 21 10 

        Random  1 77 77 

        Patch  NS 2 2 1 

Andiorrhinus sp.  0.974  -0.973  1.009  Gap  NS 0 - - 

        Random   - - 

        Patch  NS 0 - - 

Aymara sp.  1.408*  -1.404*  1.292*  Gap * 2 24 22 

        Random  1 67 67 

        Patch * 5 9 4 

New genus 1  1.054  -1.050  1.077  Gap NS 5 19 8 

        Random  1 79 79 

        Patch NS 2 2 1 

Glossodrilus sp.  1.172  -1.167  1.161  Gap NS 7 15 4 

        Random  1 76 76 

        Patch NS 6 9 3 

Martiodrilus sp.  1.110  -1.094  1.178  Gap NS 6 15 6 

        Random  1 79 79 

        Patch NS 4 6 2 

New genus 2  1.154  -1.140  1.061  Gap NS 3 16 9 

        Random  1 77 77 

        Patch NS 4 7 4 

Ia = global index of aggregation; vi = mean positive index (patch); vj = mean negative index (gap) (see Perry 1998 for details). 

*p<0.05; NS, not significant. 
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Table 3 

Soil variable
1
 Model C0 C a 

Litter
 
(g m

-2
) Spherical 0.240 0.191 14.1 

Moisture (w/w %) Flat 0.007 ― ― 

P0-5 (ppm) Spherical 0.005 0.0045 17.1 

P5-10 (ppm) Linear 0.020 ― ― 

SOC0-5 (g kg
-1

) Spherical 0.011 0.022 8.1 

SOC5-10 (g kg
-1

) Spherical 0.010 0.014 4.0 

N0-5 (g kg
-1

) Spherical 0.005 0.032 9.3 

N5-10 (g kg
-1

) Spherical 0.019 0.007 6.2 

C:N0-5 Spherical 0.002 0.005 9.1 

C:N5-10 Spherical 0.019 0.018 6.3 

FiRL (m sample
-1

)
†
 Spherical 0.151 0.230 346.5 

CoRL (m sample
-1

)
 †
 Spherical 0.265 0.387 398.4 

FiRW (g sample
-1

)
 †
 Spherical 0.130 0.052 17.3 

CoRW (g sample
-1

)
 †
 Flat 1.380 ― ― 

PR2 (MPa) Linear 0.364 ― ― 

PR5 (MPa) Linear 0.439 ― ― 

PR10 (MPa) Linear 0.651 ― ― 

<0.250 Agg (%) Linear 0.519 ― ― 

Agg0.250-1 (%) Spherical 0.041 0.033 25.4 

Agg1-5 (%) Spherical 0.029 0.020 19.8 

Agg>5 (%) Spherical 0.014 0.019 19.7 

d (g cm
-3

) Spherical 0.015 0.028 32.7 

Comp. (%) Flat 0.007 ― ― 

Cond. (cm h
-1

) Flat 0.006 ― ― 

Litter
 
(g m

-2
) Linear 1.461 ― ― 

1
 P, Phosphorous; SOC, Soil organic carbon; N, Nitrogen; FiRL, Fine root length; CoRL, Coarse root 

length; FiRW, Fine root weight; CoRW, Coarse root weight; PR, Penetration resistance; <0.250 

Agg(%), percentage of aggregates <0.250 mm; d, Bulk density; Comp, Compaction (Susceptibility to); 

Cond, Hydraulic conductivity. 0-5: soil depth 0- 5 cm; 5-10: soil depth 5-10 cm; MPa: MegaPascals. 
†
 Sample refers to a soil core of 10 cm dia. and 15 cm long (1,178.1 cm

3
). 
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Table 4 

Distance 

class 

Number of 

pair points 

Lower 

limit (m) 

Upper 

limit (m) 

Species      

And
1
 Aym Ng1 Glo Mrt Ng2 

1 180   0   5.8 0.0130 0.2206 *** 0.1627 *** -0.0841 0.0334 -0.1011 

2 610   5.8 11.6 0.0047 0.0244 -0.0355 0.0069 0.0158 0.0740 * 

3 520 11.6 17.4 -0.0619 -0.0519 -0.0283 0.0470 0.0178 -0.0226 

4 850 17.4 23.1 -0.0256 -0.0009 -0.0251 0.0178 -0.0151 -0.0158 

5 680 23.1 28.9 0.0368 -0.0099 -0.0087 0.0275 -0.0946 * 0.0276 

6 724 28.9 34.7 0.0156 -0.0414 -0.0062 -0.0701 -0.0376 -0.1045 ** 

7 758 34.7 40.5 -0.0027 -0.0034 -0.0119 -0.0427 0.0279 0.0033 

8 396 40.5 46.3 -0.0413 -0.0818 -0.0120 -0.0150 -0.0425 0.0519 

9 162 46.3 52.1 -0.0699 0.0513 0.0034 -0.0202 0.1596 * -0.1055 

10         60 52.1 57.9 -0.1264 -0.1402 0.0290 -0.0389 -0.0612 0.0379 

1
 And = Andiodrilus; Aym = Aymara; Ng = New genus; Glo = Glossodrilus; Mrt = Martiodrilus 

* P<0.05; ** P < 0.01; *** P<0.001; NS, Not significant. 
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Table 5 

Soil Distance class Overall  

variable1 1 2 3 4 5 6 7 8 9 10 corrected P 

Litter 0.207 ** -0.025 -0.065 -0.083 * 0.044 0.096 ** -0.016 -0.131 * -0.040 0.063 0.018 

Moisture 0.189 ** 0.201 *** 0.082 * 0.013 -0.069 -0.080 * -0.131 *** -0.106 * -0.015 -0.206 <0.001 

P0-5 0.353 *** 0.206 *** 0.123 ** 0.106 *** -0.017 -0.106 ** -0.172 *** -0.209 *** -0.398 *** -0.417 ** <0.001 

P5-10 0.479 *** 0.355 *** 0.251 *** 0.125 *** -0.008 -0.169 *** -0.265 *** -0.354 *** -0.464 *** -0.637 *** <0.001 

SOC0-5 0.142 * -0.024 -0.072 0.029 -0.015 -0.012 -0.036 0.017 0.092 -0.322 ** NS 

SOC5-10 0.250 *** 0.141 *** 0.096 ** 0.052 * -0.031 -0.078 * -0.043 -0.223 *** -0.297 *** -0.342 ** <0.001 

N0-5 0.207 ** -0.050 -0.095 * 0.000 -0.008 0.010 -0.004 0.026 0.068 -0.385 ** 0.026 

N5-10 0.011 0.006 -0.025 0.005 -0.009 -0.073 0.007 0.033 0.011 -0.099 NS 

C:N0-5 0.172 * -0.031 -0.060 0.018 0.057 -0.022 -0.073 -0.048 0.023 0.020 NS 

C:N5-10 0.124 * 0.096 *** 0.092 ** 0.057 ** 0.029 -0.022 -0.122 *** -0.173 *** -0.302 *** -0.265 * <0.001 

FiRL 0.195 ** 0.070 * 0.048 -0.074 * -0.053 -0.043 -0.006 -0.026 -0.023 -0.036 NS 

CoRL 0.041 0.061 0.012 -0.009 0.013 -0.102 ** -0.014 -0.022 -0.043 -0.023 NS 

FiRW 0.141 * 0.079 * -0.030 -0.030 0.085 ** 0.008 -0.099 ** -0.170 *** -0.106 0.196 0.005 

CoRW 0.040 0.020 0.022 -0.035 -0.077 * -0.040 -0.006 0.087 * 0.008 -0.047 NS 

PR2.52 0.827 *** 0.652 *** 0.452 *** 0.163 *** -0.09 * -0.284 *** -0.392 *** -0.532 *** -0.773 *** -1.008 *** <0.001 

Agg0.053-0.125 0.142 * 0.055 0.001 -0.100 ** -0.067 0.019 -0.019 0.000 -0.001 0.315 ** 0.037 

Agg0.125-0.25 0.277 *** 0.219 *** 0.092 * -0.025 -0.035 -0.074 -0.104 ** -0.120 * -0.302 *** -0.077 <0.001 

Agg0.25-0.5 0.239 *** 0.125 *** 0.102 ** -0.006 -0.045 -0.026 -0.115 ** -0.027 -0.342 *** -0.099 <0.001 

Agg0.5-1 0.250 *** 0.188 *** 0.071 * 0.013 -0.026 -0.040 -0.122 *** -0.133 ** -0.294 *** -0.228 <0.001 

Agg1-2 0.260 *** 0.137 *** -0.041 0.009 -0.010 0.004 -0.081 * -0.129 ** -0.218 ** -0.228 <0.001 

Agg2-5 0.437 *** 0.330 *** 0.174 *** 0.072 ** -0.045 -0.111 ** -0.187 *** -0.228 *** -0.510 *** -0.767 *** <0.001 

Agg5-10 -0.029 0.020 0.009 -0.005 -0.002 0.011 -0.025 -0.073 -0.058 -0.107 NS 

Agg>10 0.291 *** 0.212 *** 0.100 ** 0.011 -0.041 -0.083 * -0.116 ** -0.117 * -0.321 *** -0.313 * <0.001 

BD  0.230 *** 0.095 ** 0.037 -0.013 -0.045 -0.081 * -0.022 -0.040 -0.103 -0.283 0.008 
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Comp 0.094 0.072 * -0.081 0.000 0.004 -0.030 -0.020 -0.028 -0.048 -0.251 NS 

Conduc 0.144 * 0.053 0.018 -0.001 -0.049 -0.021 -0.071 0.003 -0.023 -0.177 NS 

1 Same legend as in Table 3. 
2 Correlograms for the variable resistance to penetration at 5, 10, 15 and 20 cm were identical to that obtained for 2.5 cm depth. 

* P<0.05; ** P < 0.01; *** P<0.001; NS, Not significant. 
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Table 6 

Soil variable
1
 Andiodrilus Aymara New genus 1 Glossodrilus Martiodrilus New genus 2 

       

Litter -0.270  0.343  0.176  -0.149  0.088  -0.206  

Moisture 0.031  -0.312  0.068  0.208  -0.085  0.147  

P0-5 -0.034  0.045  0.086  -0.084  0.230  0.222  

P5-10 -0.116  0.109  -0.181  -0.043  0.301  0.085  

SOC0-5 -0.203  0.161  0.662 ** -0.139  -0.045  -0.160  

SOC5-10 0.012  -0.221  -0.420 * -0.012  0.153  0.157  

N0-5 -0.244  0.325  0.546 ** -0.179  0.025  -0.199  

N5-10 -0.166  -0.037  0.462 ** -0.057  -0.048  -0.265  

C:N0-5 0.059  -0.235  0.189  0.099  -0.119  0.133  

C:N5-10 0.122  -0.180  -0.538 ** -0.004  0.172  0.341 ** 

FiRL -0.090  0.442 ** -0.011  -0.122  -0.016  -0.031  

CoRL -0.216  0.140  -0.121  -0.148  -0.042  -0.148  

FiRW -0.006  0.349  0.015  -0.121  -0.028  -0.080  

CoRW -0.016  0.432  -0.113  -0.083  -0.162  0.014  

PR2 -0.407 * -0.030  -0.145  0.253  0.131  0.050  

PR5 -0.472 ** 0.021  -0.141  0.164  0.100  0.058  

PR10 -0.450 ** 0.033  -0.111  0.157  0.044  0.017  

<0.250Agg -0.102 -0.345 ** -0.204  0.013  -0.287  -0.001  

Ag1 -0.229  -0.186  0.032  -0.141  -0.213  -0.107  

Ag2 -0.383 ** 0.1034  0.272  -0.373 ** 0.094  -0.191  

Ag10 0.358  0.020  -0.182  0.311  0.027  0.169  

Bulk 0.271  -0.061  -0.746 ** 0.235  0.068  0.199  

Comp 0.106  -0.317  -0.526 ** 0.189  -0.067  0.284  

Conduc -0.098  0.178  0.503 ** -0.242  -0.030  -0.185  
1 Same legend as in Table 4. 

* p<0.05, ** p<0.01, *** p<0.001
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Figure captions  1 

Figure 1. Overlaid contour and classed red-blue post maps (surfer) of SADIE clustering 2 

indices for counts of all species (except Andiorrhinus sp.) Blue shading and darker blue 3 

dots indicate significant gaps (index values > - 1.5); and red shading and darker red dots 4 

indicate significant patches (index values > 1.5). Black dots indicate units with 5 

clustering that exceeds expectation although not significantly (> 2 or < -1). Open dots 6 

indicate clustering below expectation (<1 or >-1). 7 

Figure 2. Estimated semi-variograms and contour plot of a) SOC concentration (g kg 8 

soil
-1

), b) P concentration (ppm), c) hydraulic conductivity (cm h
-1

), and d) proneness to 9 

compaction (%) 10 

 11 

 12 
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Figure 1 – Jiménez, Decaëns, Amézquita, Rao, Thomas, Lavelle 
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Figure 2 – Jiménez, Decaëns, Amézquita, Rao, Thomas, Lavelle 


