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Abstract 20 

When deforestation is followed by continuous arable cropping, a permanent decline of 21 

between 22 and 42% in the soil organic carbon (SOC) has been reported. This 22 

systematic loss of soil carbon (C) is mainly attributed to the loss of physically 23 

protected SOC. The Rothamsted Carbon model (RothC) does not include a 24 

description of the processes of physical protection of SOC and so losses of C during 25 
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continuous cultivation of previously uncultivated land are not likely to be accurately 26 

simulated. Our results show that in the first years following deforestation, RothC does 27 

not capture the fast drop in forest derived soil C. However, the model does 28 

satisfactorily simulate the changes in SOC derived from the following crops. 29 

Uncertainty in input data and accounting for erosion, does not explain the 30 

underestimation of decomposition after deforestation by RothC. A simple approach to 31 

increase decomposition by multiplying rate constants is evaluated. This approach 32 

needs high multiplication rates and leads to an overestimation of plant input values to 33 

sustain SOC equilibrium levels. However, the ability of RothC to simulate changes in 34 

the forest derived SOC can be greatly improved with an implementation of a simple 35 

approach to account for SOC dynamics due to the loss of physically protected C. This 36 

approach implements a new soil carbon pool into RothC which represents the labile 37 

but protected carbon fraction which builds up under minimally disturbed land uses, 38 

and which loses its protection once the soil is disturbed. The new pool is calibrated 39 

using 13C natural abundance analysis in conjunction with soil fractionation. 40 

 41 

 42 
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1. Introduction 47 

 During the 1990s carbon dioxide (CO2) emissions due to land use change are 48 

estimated to have been between 0.5–2.7 Pg C yr–1 out of the total emissions of 7.9 Pg 49 

C yr–1, contributing 6–39% of the total emissions of CO2 to the atmosphere (IPCC, 50 

2007). Historically, emissions from land use change are estimated to have contributed 51 

156 Pg C to the human induced CO2 emissions occurring from 1850 to 2000 52 

(Houghton, 2003), equivalent to 12–35 ppm (IPCC, 2007). Houghton (2003) 53 

estimated that 2.24 Pg C y-1 are attributable to the deforestation that occurred during 54 

the 1990s, thus being the biggest contributor to emissions in the land use change 55 

sector. Deforestation induces carbon (C) losses due to decay of vegetation and the 56 

decomposition of soil organic matter (SOM). Available assessments of historical soil 57 

C losses incorporate a high degree of uncertainty ranging from 40–537 Pg and so 58 

current net fluxes from the soil to the atmosphere are not well known at any national, 59 

regional or global scale (Lal, 2003). Therefore, a complete understanding of soil C 60 

fluxes, especially due to deforestation and subsequent continuous cultivation is of 61 

great importance in improving our estimates of C emissions from soils. 62 

 When forests and grasslands are converted to long term arable cropping, soil C 63 

is permanently lost to the atmosphere and the soil solution. A permanent decline of 64 

between 22 and 42% in the soil organic carbon (SOC) that was originally present 65 

under forest has been reported by Guo and Gifford (2002) and Murty et al. (2002). 66 

Soils lose most C in the first years following conversion (Houghton, 2003) until a new 67 

equilibrium level is established ( Houghton, 1999; Guo and Gifford, 2002). This 68 

systematic loss of soil C across regions and site specific management is mainly 69 

attributed to the loss of physically protected SOC (Van Veen and Paul, 1981; 70 

Balesdent et al., 2000; Six et al., 2002). Physical protection of C occurs when organic 71 
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matter (OM) is trapped inside soil aggregates (Balesdent et al., 2000). This 72 

stabilisation effect occurs due to the physical segregation of substrate and micro-73 

organisms, a reduced rate of oxygen diffusion into the aggregates and the separation 74 

of microbial biomass from microbial grazers (Six et al., 2002). This C pool is very 75 

sensitive to cultivation because the mechanical disturbance of the soil leads to a break 76 

up of aggregates which in turn releases C and makes is accessible to decomposition 77 

(Balesdent et al., 2000; Six et al., 2000; Denef et al., 2007). Here, we define the loss 78 

of soil aggregate structure and subsequent release of decomposable OM as the loss of 79 

physically protected SOC. Another important factor that can contribute to the decline 80 

in soil C is soil erosion (Balesdent et al., 2000). However, the absolute changes in soil 81 

C stocks and the temporal dynamics of the losses depend on management, climate and 82 

soil type for the particular site (Allen, 1985; Guo and Gifford, 2002; Schwendenmann 83 

and Pendall, 2006). To capture these complex and dynamic interactions, SOM models 84 

are employed. One of the most widely used models of soil C dynamics is the 85 

Rothamsted C model (RothC) (Coleman and Jenkinson, 1996). This model has been 86 

evaluated under a wide range of ecosystems, climate conditions (Coleman et al., 1997; 87 

Diels et al., 2004; Shirato et al., 2005; Kamoni et al., 2007) and land use change 88 

(Smith et al., 1997; Cerri et al., 2007). However, the model has not been widely 89 

evaluated against changes in SOC due to forest clearing followed by continuous 90 

arable cropping. Long term experiments previously used to evaluate the model, 91 

usually include long periods of the same or similar management practices, so do not 92 

show the C loss characteristic of forest clearing as assessed here. Because RothC 93 

includes neither an explicit description of the processes of physical protection of SOC 94 

or soil erosion, we postulated that losses of SOC during continuous cultivation of 95 

previously uncultivated land were not likely to be accurately simulated. 96 
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 Only a few SOM models include an explicit description of physically 97 

protected SOC. Van Veen and Paul (1981) introduced two states, physically protected 98 

and not protected SOC into their model for long term SOC turnover. In that model, 99 

protected SOC has a relatively slower decomposition rate compared to its non-100 

protected counterpart. The proportion of SOM that would be protected was indicated 101 

by a “protection coefficient” which was indirectly fitted to the simulation of SOC 102 

dynamics in virgin and cropped soils. In grassland soils, 50% of SOC was protected 103 

and under arable cropping, only 20% was protected. They hypothesised that the major 104 

factor of enhanced mineralization due to cultivation is the disruption of aggregates. 105 

Molina et al. (1983) used a resistant SOC pool, which is constantly formed and 106 

periodically transferred to a more labile pool during cultivation events. Hassink and 107 

Whitmore (1997) compared the performance of the RothC model to a model which 108 

they developed to explicitly describe the dynamics of protection and loss of protection 109 

of SOC. Their model is based on adsorption and desorption kinetics of SOM particles 110 

to clay surfaces and the rate at which SOM becomes protected depends on the fraction 111 

of the available protective capacity of a soil. The two models were applied to 112 

experimental soil treatments over 20 years. The model of Hassink and Whitmore 113 

(1997), which was calibrated at one of their sites, performed better for these trials, but 114 

described only 5% more of the variation in the data than RothC. Furthermore, the 115 

soils in their treatments were taken from arable fields and were regularly disturbed 116 

during the experiment, presumably being at or close to equilibrium in terms of soil 117 

aggregate structure. Their model of physical protection does not, therefore, describe 118 

the dynamics of physical protection and loss of physical protection due to land use or 119 

management change. We implement a simple approach to simulate the dynamics of 120 

physically protected C (within aggregates) due to land use change and the loss of soil 121 
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C due to erosion and compare, and discuss findings in relation to other models of 122 

physical protection. 123 

 SOM models are typically evaluated against measurements of total SOC. 124 

Relatively few studies have used �13C data to evaluate SOM models (e.g. Townsend 125 

et al., 1995; Balesdent, 1996; Molina et al., 2001; Diels et al., 2004; Niklaus and 126 

Falloon, 2006; Cerri et al., 2007). Measurements of �13C of SOC can be used to 127 

distinguish between C3 and C4 plant derived C. C3 and C4 plants discriminate 128 

differently between 12C and the natural isotope 13C. C3 plants (most trees and herbs) 129 

develop a �13C signature that ranges from -23‰ to -40‰ whereas values for C4 plants 130 

(some tropical grasses and cereals) range from -9‰ to -19‰ (Smith and Epstein, 131 

1971). These distinct signatures are preserved during the decomposition of plant 132 

material in the soil. On soils where a complete shift from C3 to C4 plants has occurred, 133 

the difference in the isotopic signatures provides a means to infer the turnover time of 134 

SOM, distinguishing between the original SOM and the contribution of the 135 

succeeding vegetation (Balesdent and Mariotti, 1987). Linking 13C abundance with 136 

SOM particle size fractionation techniques has been used by a number of different 137 

workers to assess quantitative changes of C in different soil size fractions (Balesdent 138 

and Mariotti, 1987; Balesdent et al., 1988, 1998; Vitorello et al., 1989; Martin et al., 139 

1990; Desjardins et al., 1994; Jastrow et al., 1996; Paul et al., 2008; Schwendenmann 140 

and Pendall, 2006). However, there are only a few studies where model evaluation has 141 

used soil fractionation techniques (Skjemstad et al., 2004; Zimmermann and Leifeld, 142 

2007) or the combination of 13C abundance and soil fractionation techniques 143 

(Balesdent, 1996). 144 

 In our study we used total SOC data as well as �13C data from four 145 

chronosequence sites to evaluate the RothC model. The long term response of SOC to 146 
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forest clearance is not, therefore, represented by a single set of measurements from 147 

long term sites but instead from measurements of plots with similar soil and 148 

management characteristic but of different cropping ages. This introduces an inherent 149 

inconsistency in the representation of climatic drivers used in the simulation. The 150 

model simulates the C dynamics along a timeline defined by the sequence of climate 151 

and management. Model results are then compared to the chronosequence 152 

measurements as if they were taken in a long term trial (Smith et al., 2000). To 153 

account for these inaccuracies, an uncertainty analysis was carried out to estimate the 154 

variability in model results. 155 

 The objectives of this study are (i) to evaluate RothC at forest cultivation 156 

sequence sites using 13C abundance measurements, (ii) to assess the uncertainty of the 157 

model results due to uncertainties in the input data, (iii) to use 13C natural abundance 158 

in conjunction with soil fractionation to evaluate the dynamics of the C pools of 159 

RothC separately from total C dynamics, (iv) to account for soil erosion, and (v) to 160 

implement a simple approach to simulate the dynamics of physically protected C. 161 

 162 

2. Materials and Methods 163 

2.1. Site description 164 

 The RothC model was run on four chronosequence sites, three in Zimbabwe, 165 

Africa, and one in France, Europe. Climate, soils, vegetation and management of the 166 

Zimbabwean and French sites and their C dynamics are described in detail in Zingore 167 

et al. (2005) and Arrouays and Pelissier (1994) and Balesdent et al. (1998), 168 

respectively. At the three Zimbabwean sites (hereafter referred to as Mafungautsi, 169 

Masvingo and Chikwaka) miombo woodland was cleared for smallholder subsistence 170 

farming cropping maize in monoculture. Miombo woodlands are mainly composed of 171 
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C3 plants and maize is a C4 plant. Therefore, the soils of the selected sites exhibit a 172 

shift from C3 to C4 plant vegetation which enables the separation of soil C as 173 

described in section 1. Inputs to the soils at all three Zimbabwean sites are minimal as 174 

yields are very low (<100–300 g C m-2 year-1) and maize stover is often used as cattle 175 

feed, or it is burned. There is no use of mineral or organic fertilizer at the selected 176 

sites. The soils at the three sites represent the major soil types under smallholder 177 

farming in Zimbabwe and are situated in different climatic regions of the country. The 178 

French chronosequence site is situated in the Pyrenean Piedmont, hereafter referred to 179 

as the “Pyrenean” site. The soil at the Pyrenean site is a thick humic acid loamy soil. 180 

Mature maritime pine forest (mainly C3 plants) was cleared for intensive continuous 181 

maize cropping with stalks returned to the soil, no organic fertilizer use and C returns 182 

to the soil of about 500 g C m-2 year-1. Table 1 gives an overview of the site 183 

characteristics relevant for the model simulations. 184 

 185 

2.2. The Rothamsted Carbon model 186 

 The Rothamsted C model (RothC) was originally developed for temperate 187 

ecosystems (Smith et al., 2000), although model parameters encompass the 188 

temperature sensitivity of SOM decomposition under tropical conditions as the model 189 

was calibrated using data from Ibadan, Nigeria (Jenkinson, 1990). 190 

 The RothC model includes five pools of SOM: DPM (= decomposable plant 191 

material), RPM (= resistant plant material), BIO (= microbial biomass), HUM (= 192 

humified OM) and IOM (= inert OM). Each pool, apart from IOM, decomposes by 193 

first order kinetics and using a rate constant specific to the pool. Each pool 194 

decomposes into CO2, BIO and HUM. The proportion of BIO to HUM is a fixed 195 

parameter whereas the proportion of CO2 to BIO+HUM varies according to the clay 196 
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content. Less clay leads to a relatively higher loss of CO2. Decomposition is sensitive 197 

to the temperature, soil moisture and clay content of the soil, and so soil texture, 198 

monthly climate, land use and cultivation data are the inputs to the model (Coleman 199 

and Jenkinson, 1996; Smith et al., 1997). The model treats the effect of physical 200 

protection due to tillage implicitly by the DPM/RPM ratio of arable land use which 201 

was fitted to tilled arable soils (Jenskinson et al., 1991, 1992; Falloon, 2001). The 202 

model therefore accounts for the effect of regular disturbance on decomposition rates. 203 

The model also implicitly takes into account physical protection due to adsorption and 204 

desorption as the decomposition efficiency depends on the clay or CEC of the soil, 205 

leading to a greater protection of SOM in soils with a higher clay content. 206 

Decomposition in the RothC model is also sensitive to whether the soil is bare or not. 207 

Based on C14 labelled plant material decomposition measurements in bare and 208 

covered soils, Jenkinson introduced a plant retainment decomposition modifier in the 209 

model, which reduces decomposition rates by 40% in soils with actively growing 210 

vegetation. No reduction is assumed in soil where no vegetation is actively growing, 211 

or the soil is bare (Jenkinson et al., 1987). This empirical factor is not explicitly 212 

related to any physical or chemical decomposition parameters. It has been shown to 213 

work well (e.g. Coleman et al., 1997), which could be due to bare soils being more 214 

exposed to precipitation impacts, harsher drying-wetting cycles and higher soil 215 

temperature fluctuation. The effects are also indirectly caused by mechanical 216 

disturbance of the soil which again could be an indirect effect of physical protection 217 

(Balesdent et al., 2000). 218 

 219 

2.3. Model input data 220 
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 As site specific temperature, precipitation and open pan evaporation data were 221 

not available, monthly average temperature and precipitation data were retrieved from 222 

the CRU TS 2.1 global climate data set. This dataset is publicly available 223 

(http://www.cru.uea.ac.uk/) (Mitchell and Jones, 2005).  224 

 Monthly averages over a hundred year period (1901–2000) were calculated 225 

from the nearest grid values. Monthly potential evapotranspiration (ET0) was 226 

calculated using the FAO Penman-Monteith approach (Allen et al., 1998) based on 227 

the CRU monthly temperature and vapour pressure. The values were then averaged 228 

over 100 years and multiplied by 1.33 to convert ET0 derived from Penman-Monteith, 229 

into open pan evaporation values (Doorenbos et al., 1986; Coleman and Jenkinson, 230 

1999).  231 

 Management schedules, soil texture and SOC for the African sites were taken 232 

from (Zingore et al., 2005) and Zingore (personal communication) (Table 1). 233 

Equivalent data for the Pyrenean site were taken from Balesdent et al. (1998) and 234 

Arrouays and Pelissier (1994) (Table 1). 235 

 236 

Insert Table 1 here 237 

 238 

2.4. Simulations 239 

2.4.1. Default model application 240 

 The model was modified to distinguish between C derived from forest (C3 241 

plants) and maize (C4 plants) and to compute soil �13C values of total organic C. Site 242 

simulations were run on constant yearly climate data and in two consecutive steps. 243 

First, the monthly soil inputs for maize were estimated, using the standard value of 244 

1.44 for the DPM/RPM ratio. For the Mafungautsi site and the Pyrenean site, 245 
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estimates of C returned to the soil under arable conditions are given by the authors of 246 

the original data, being 12 and 500 g C m-2 year-1, respectively (Balesdent et al., 1998; 247 

Zingore et al., 2005). For Masvingo and Chikwaka monthly soil inputs were 248 

calculated by running the model to equilibrium using the total accumulated maize C, 249 

which was assumed to have reached equilibrium. These values are 320 and 770 g C 250 

m-2 as given by Zingore et al. (2005). In the second step, the model was run to 251 

equilibrium for forest conditions (using the standard DPM/RPM ratio of 0.25) 252 

followed by the period of maize cropping in the non-equilibrium phase of the 253 

simulations. For the non-equilibrium phase of the simulation, the C inputs calculated 254 

in the first step were used. 255 

 Since the model calculates soil C inputs from total soil C, these annual values 256 

plus the amount of organic C removed from the site gives net primary production 257 

(Jenkinson et al., 1999). Hence, the soil C input calculated from the forest equilibrium 258 

site can be compared to NPP data for the forest. The values for the maize simulations 259 

can be compared to the yearly SOM returns estimated from Zingore et al. (2005). 260 

 261 

2.4.2. Adjusting IOM values for African sites 262 

 The measured �13C data of the forest derived C (Figs. 1 and 2 in Zingore et al.,  263 

2005) show a steep decline in the first years of cultivation. After ca. 10–20 years the 264 

decline levels off and C stocks do not change significantly. This suggests that the old 265 

C is depleted in easily decomposable OM and has reached a level at which only very 266 

recalcitrant C remains. Recalcitrant C is represented by the IOM pool in RothC. IOM 267 

“represents a small, stable and biologically inert fraction of soil C, which has a high 268 

radiocarbon age” (Falloon et al., 1998). It was originally determined from soil 269 

radiocarbon data. Since these data are rare and expensive, Falloon et al. (1998) 270 
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developed a regression equation to estimate the size of the IOM pool from SOC. 271 

However, Falloon et al. (1998) conclude that “separate models of log(IOM) and 272 

log(SOC) content for each land use show significant relationships for all land uses 273 

except savannah”. This suggests that the IOM equation might not be valid for dry 274 

miombo woodland which is a savannah ecosystem. The equations also have wide 95% 275 

confidence intervals (Falloon et al., 2000), reflecting the large variation around the 276 

regression line that is observed in the experimental data. 277 

 IOM is described chemically as a mixture of charcoal, geologically ancient 278 

coal and SOC trapped irreversibly in the soil (Falloon et al., 1998). Miombo 279 

woodlands are fire prone (Desanker et al., 1997) and it can be assumed that fire 280 

residues such as charcoal accumulate in the soil more than in many temperate 281 

ecosystems. We therefore adjusted the IOM pool in the simulations to a value close to 282 

the value given for the forest derived C stocks at the equilibrium reached under 283 

cultivation. These values were 860, 800 and 1460 g C m-2 for Mafungautsi, Masvingo 284 

and Chikwaka, respectively (Zingore et al., 2005). These adjustments are supported 285 

by recent findings of the relationship between measured charcoal and the IOM pool of 286 

RothC when it was applied to soils of two different regions in Australia. Analyses of 287 

452 Australian soil profiles yielded poor correlation between SOC and black C 288 

(residue of incomplete combustion of biomass and fossil fuels). Furthermore, the 289 

Falloon et al. (1998) equation underestimated the average proportion of black C by 290 

13.8%, where the average of the measured values was 20.4% and the estimated value 291 

was 6.6%. Default and adjusted IOM values in our study are 7.4, 8.2 and 9% and 44.1, 292 

19, 44.9% for Mafungautsi, Masvingo and Chikwaka, respectively. Even the 44.1% 293 

and 44.9% are well within the ranges of the coefficient of variation of the measured 294 

mean black C content of the Australian soils. The authors suggest that the estimate 295 
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based on the Falloon et al. (1998) equation might not be applicable to ecosystems 296 

where black C is a significant fraction of SOC. 297 

 298 

2.4.3. Accounting for erosion 299 

 Erosion can account for significant soil C losses at a site. For the three 300 

Zimbabwean sites, soil erosion is estimated as 1200 g soil m-2 year-1 (Zingore et al., 301 

2005). Here we use a simple approach for estimating C losses based on the soil 302 

erosion rate, SOC content (Van Oost et al.,2007) and a C enrichment factor (Kniesel, 303 

1980). As total soil C decreases over time, the amount of C in 1200 g soil decreases as 304 

well because the percentage C content per unit soil decreases over time. Furthermore, 305 

the amount of C in the 1200 g soil m-2 that is eroded each year, follows the same first 306 

order kinetic decline as total C. Total C decline is based on the C content in x g of soil 307 

in 20 cm depth per hectare. The relative dynamic is the same as in 1200 g soil. Thus, 308 

using the rate constants for a single exponential function estimated by Zingore et al. 309 

(2005), we calculated the C lost each year. The percentage C loss amounted to ca. 310 

0.4% of the total C per year for each site. The enrichment factor is calculated as 311 

7.4*(1000*soil loss)-0.2 (Kniesel, 1980) and equates here to 1.13. We implemented 312 

this simple approach in RothC by subtracting 0.4%*1.13 of the C from each pool each 313 

year. At the Pyrenean site, no erosion is reported so no erosion term was used. 314 

 315 

2.4.4. Accounting for “physically protected” C 316 

 At the Pyrenean chronosequence site Balesdent et al. (1998) studied the effect 317 

of soil disturbance on SOC dynamics in several particle size fractions. They showed 318 

that cultivation affects C dynamics in all particle size fractions. The fractions used by 319 

Balesdent (1998) have been shown in other studies to correspond closely to the model 320 
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pools used in RothC (Balesdent, 1996; Skjemstad et al., 2004). Therefore, we used 321 

their data and findings to evaluate the C dynamics per model pool. The C contents of 322 

the different model pools were compared to C contents measured in the different 323 

particle size fractions: the C of the RPM pool was compared to the C of particle sizes 324 

>50 �m (particulate organic matter (POM)) and the sum of C in the DPM, BIO, HUM 325 

and IOM pool was compared to the C associated with particle sizes <50 �m. 326 

 Balesdent et al. (1998) show that SOC in the size fraction <50 µm is made up 327 

of the relatively rapidly decomposing pool of silt associated C, and a relatively slowly 328 

decomposing pool of clay associated C. The measured turnover of the clay associated 329 

C has a decay constant of 0.03 year-1 (Balesdent et al., 1998). This value is close to 330 

the decay constant of the HUM pool of RothC (0.02 year-1 ; Coleman and Jenkinson, 331 

1999). Hence, these pools match closely in terms of decomposition dynamics. The silt 332 

associated C has a measured decay constant of 0.12 year-1 but initially is also 333 

represented by the humus pool of the model. The Balesdent et al. (1998) analysis 334 

shows that the C in the silt size fraction declines almost as rapidly as that in the POM 335 

fraction. We hypothesized that we could represent the silt size fraction by an extra 336 

pool, giving it the decomposition rate of the HUM pool for the time under undisturbed 337 

land use and a decomposition rate similar to the RPM pool (0.3 year-1) for the time 338 

under cultivation, to simulate the loss of physically protected C. We will refer to this 339 

extra pool as the “silt-humus” pool and the remaining HUM pool as the "clay-humus" 340 

pool. Each SOC pool of RothC would now decompose into BIO, silt-humus and clay-341 

humus. The initial size of the silt pool was fitted to the amount of C in the silt size 342 

fraction under forest (RothC equilibrium run for forest conditions) by adjusting the 343 

proportions of C that decomposes into the silt-humus pool and the clay-humus pool. 344 

The sum of the two proportions equals the proportion that was previously flowing 345 
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only into HUM. The silt-humus pool would represent the labile fraction of the 346 

protected SOC under undisturbed land use and would change to a non-protected SOC 347 

pool under cultivation.  348 

 This concept is different from the concept of the model of physical protection 349 

developed by Hassink and Whitmore (1997). In their model, total OM cycles between 350 

a non-protected and protected SOM pool, where OM only decomposes in the non-351 

protected pool. The protected pool is therefore similar in concept to the IOM pool of 352 

RothC, however in RothC IOM is not linked to the other active SOC pools. In the 353 

model of Hassink and Whitmore (1997) the rate of protection depends on the amount 354 

of free OM and the protective capacity of the soil. This parameter is linearly 355 

correlated with the soil's clay content. The rate at which SOC loses its protection is 356 

represented by a desorption rate constant. Both rate constants and the protective 357 

capacity of the soil are indirectly fitted to soil C measurements of long term arable 358 

soils. Therefore, their model parameters are only calibrated for arable soils with no 359 

land use change.  360 

 Our concept is more similar to the model of Van Veen and Paul (1981) which 361 

introduces SOM pools in two states: protected (e.g. under grassland) and not protected 362 

(e.g. under cropping) and where OM decomposes slower in the protected pool. This 363 

would relate to the new silt-humus pool in RothC, which is protected in non-disturbed 364 

soils (here forest) and loses its protection in cultivated soils. Also, the decomposition 365 

rate constant of the silt-humus pool decreases in non-disturbed soils. 366 

The approach taken by Molina et al. (1983) is again different from our approach as in 367 

their model, loss of physical protection is represented by an occasional transfer of C 368 

from a resistant pool to a more labile pool at cultivation events.  369 

 370 
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2.5. Evaluation - Statistical analysis 371 

 Model results at all four chronosequence sites were evaluated against total 372 

organic C and against forest and maize derived C separately.  373 

 The model results were evaluated statistically using the approach proposed by 374 

Smith et al. (1996, 1997). The degree of association between simulated and measured 375 

values was determined using the correlation coefficient (R), and the significance of 376 

the correlation was assessed using a Student’s t test. This tells us whether the two sets 377 

of data have the same trend, and is important if the results are to be extrapolated 378 

beyond the scope of the experiment. Values for R range from -1 to +1. Values close to 379 

-1 indicate a negative correlation between simulations and measurements, Values of 0 380 

indicate no correlation and values close to +1 indicate a positive correlation (Smith et 381 

al., 1996; Smith and Smith, 2007). 382 

 The coincidence between the measured and simulated values was assessed by 383 

calculating the root mean squared deviation (RMS) (Smith et al., 2002; Smith and 384 

Smith, 2007). This is the average total difference between measured and simulated 385 

values and is given in the same units as the analysed data. The lower the value of 386 

RMS, the more accurate the simulation. 387 

 The bias in the simulations with respect to the measurements was calculated as 388 

the mean difference (M) (Addiscott and Whitmore, 1987). M does not include a 389 

square term, so simulated values above and below the measurements cancel each 390 

other out. Therefore, inconsistent errors will not be considered and values of M will 391 

be either positive or negative if the simulation results are biased. M will be zero if 392 

there is no difference between simulated and measured values. The significance of M 393 

can be tested using a Student’s t test (Smith et al., 1996, 1997; Smith and Smith, 394 

2007). 395 
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 396 

2.6. Uncertainty analysis 397 

 Using chronosequence data as a surrogate for long term experimental data in 398 

model evaluation is inherently uncertain as space is used to substitute for time. 399 

Samples are taken from different plots, reflecting different points in time after a land 400 

use or management change, instead of taking samples from the same plot over time. 401 

In addition, inaccuracies are introduced in the simulations because the simulations 402 

must be based on average climate data rather than a continuously varying climate. To 403 

account for these uncertainties in the model evaluation, the response of the model 404 

towards possible variations in input data was assessed by an uncertainty analysis. 405 

 The uncertainty analysis followed a Monte Carlo approach. Ranges of input 406 

data were defined and sampled 500 times using Latin Hypercube Sampling. RothC 407 

was run on the 500 samples, each run using a different combination of input data. This 408 

approach was chosen to encompass the interaction of input data in the model results. 409 

The uncertainty ranges of the driving variables temperature, precipitation and clay 410 

content were set according to information from the literature and electronic databases. 411 

All ranges were assumed to be uniformly distributed. 412 

 Climate uncertainty ranges for the sites in Zimbabwe were based on minimum 413 

and maximum yearly values given by (1) CRU 100 year and 30 year (1961–1990) 414 

average, (2) MarkSim weather generator (Jones and Thornton, 2000) and (3) data 415 

from the Zimbabwe Meteorologic Service Department (ZMSD) (supplied by S. 416 

Zingore, personal communication) (Table 2). For the Pyrenean site, only CRU 100 417 

year average data were available. To generate uncertainty ranges, we used the average 418 

relative ranges of the Zimbabwean sites. 419 

 420 
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Insert Table 2 here 421 

 422 

 Uncertainty ranges for clay were based on minimum and maximum values 423 

given in the FAO data base for given soil types (Batjes, 2002). Only the soil types of 424 

the African sites are present in that data base. Measured standard deviations of the 425 

clay content by Balesdent et al. (1998) are comparably small, so we interpolated the 426 

minimum and maximum values given for the African sites to the Pyrenean site so as 427 

to obtain comparable ranges. Ranges are given in Table 2. 428 

 429 

3. Results and discussion 430 

3.1. Plant input estimation 431 

 Plant input for maize simulations at Masvingo and Chikwaka were estimated 432 

by the model to be 36 and 63 g C m-2 year-1, respectively, and 11 g C m-2 year-1 for 433 

Mafungautsi when run in the same mode. SOC under maize at the Pyrenean site had 434 

not reached equilibrium (Arrouays and Pelissier, 1994) so could not be used to 435 

calculate plant input values by running the model to equilibrium. 436 

 Maize plant input values for Masvingo and Chikwaka can only be compared 437 

relative to the estimate given by Zingore et al. (2005) for the Mafungautsi site, which 438 

is 12 g C m-2 year-1. Similarly derived estimates for Masvingo and Chikwaka are 439 

highly uncertain, as stated by Zingore et al. (2005). The deviation in the values 440 

simulated at Masvingo and Chikwaka from the measurements at Mafungautsi can be 441 

explained by considering the differences in the sites. Masvingo has a higher clay 442 

content and supports higher average yields than Mafungautsi (Zingore et al., 2005). It 443 

can be assumed that the finer textured soil has a better moisture regime and inherent 444 

soil fertility which results in the higher observed crop yields, and therefore higher C 445 
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returns to the soil. These higher soil inputs sustain the observed higher C stock. 446 

Average decomposition rates are presumably slower in the clay soil than in the sandy 447 

soil and simulated C returns should be lower in the clay soil than in the sand soil. 448 

However, that would only be true if the C stocks in the two different soils are similar. 449 

The total difference of maize C stock in the Mafungautsi soil and the Masvingo soil is 450 

240 g C ha-1, being 80 g C ha-1 and 320 g C ha-1for Mafungautsi and Masvingo, 451 

respectively. Similarly, at Chikwaka, where the clay and C contents (770 g C ha-1) are 452 

even higher than at Masvingo, the simulated C returns are higher, which again 453 

correlates with even higher average yields as Chikwaka than at Masvingo. Confidence 454 

in these values is increased by the good fit between the maize derived C simulations 455 

and the measured values (see section 3.2. and Table 3). It can therefore be assumed 456 

that the simulated higher returns for the finer textured soil are due to the higher C 457 

stock, and these are only partly balanced by a slower average turnover. 458 

 Plant input values for the equilibrium run under forest were 179, 184, 248 and 459 

898 g C m-2 year-1 for Mafungautsi, Masvingo, Chikwaka and the Pyrenean sites, 460 

respectively. However, there are no measurements of NPP for comparison with 461 

simulated plant input values for forest. We therefore compare our simulated values for 462 

the African sites to data published in related literature. Frost (1996) estimates net 463 

biomass production between 120 and 200 g m-2 year-1 for dry miombo woodlands, 464 

corresponding to 54 and 90 g C m-2 year-1. Brown et al. (1994) gives an estimate of 465 

368 g C m-2 year-1, as a combined value of above and below ground input to a dry 466 

miombo woodland site in Zimbabwe. Similarly, Jenkinson et al. (1999) simulated a 467 

plant input of 374 g C m-2 year-1 for a natural woodland site in Zambia, on a Haplic 468 

Ferrasol, with an annual rainfall of 1245 mm within a single wet season, November to 469 

April. The values estimated by the model (179, 184, 248 g C m-2 year-1) lie well 470 
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within the published ranges of estimated plant inputs of miombo woodlands (54 to 471 

374 g C m-2 year-1). 472 

 For the Pyrenean site estimates for forest above ground plant inputs are given 473 

by Balesdent et al. (1998) to be 150–250 g C m-2 year-1 as leaves, fruit and small 474 

branches. These values refer to measurements at forest stands in the same region. In 475 

forests, fine root turnover can be estimated to be approximately the same amount as 476 

litter fall (Zianis et al., 2005), which would amount to ca. 300–500 g C m-2 year-1of 477 

total plant inputs. The MODIS satellite derived NPP values (Running et al., 2004) for 478 

forest stands in the same region were extracted and range between 510–810 g C m-2 479 

year-1 for the three sites in 2000 and 2002. At 898 g C m-2 year-1, the model estimates 480 

of plant inputs under forests at the Pyrenean site are slightly higher than these 481 

measurements (150–810 g C m-2 year-1). 482 

 483 

3.2. Carbon dynamics of simulations without adjustment of IOM for the specific site, 484 

simulation of erosion or physical protection  485 

 The results of simulations not including erosion or physical protection suggest 486 

that RothC does not capture the soil C response after forest clearing for continuous 487 

cropping, neither in the tropics nor in the temperate ecosystem.  488 

 The default model simulations for the sites in Zimbabwe of total C dynamics 489 

(Fig. 1) show that the rapid loss of soil C in the first years of cultivation is not 490 

captured by the model and that the continuous C loss towards the end of the 491 

simulation is overestimated and does not reach a plateau as can be seen in the 492 

measured data (Figs.1 and 2 in Zingore et al., 2005). Simulated forest derived C 493 

would eventually level off at the level of IOM, as it does not receive any new plant 494 

inputs. 495 
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 496 

Insert Figure 1 here 497 

 498 

 This was a surprising result as RothC has been shown to simulate 499 

deforestation well in the Brazilian Amazon region (Cerri et al., 2007). However, these 500 

sites were converted to well managed pastures and do not exhibit a substantial C loss. 501 

Diels et al. (2004) applied RothC in a sub-humid tropical climate. Their results show 502 

that RothC also underestimates C losses compared to measured values. However, 503 

several years of grassland precede the simulated cropping experiments and we 504 

hypothesise that the same explanation holds for the findings of Diels et al. (2004) as 505 

for the experiments studied here. Under undisturbed grassland, the SOC became 506 

physically protected and accumulated in a labile, though protected, C pool. This C 507 

decreased rapidly once the cropping experiments started, and RothC did not capture 508 

this dynamic. Similar modelling results were shown by Coleman et al. (1997) when 509 

the RothC model was applied to the Highfield bare fallow experiment in Rothamsted, 510 

England. That site was grazed grassland for several hundred years until it was 511 

ploughed and converted to bare fallow. RothC underestimated C loss after the 512 

conversion. Moreover, the plant retainment factor was set to 1.0 in these simulations, 513 

compared to the set up in our study where only half of the year was assumed to 514 

exhibit bare soil conditions. Therefore, decomposition was even relatively faster in the 515 

simulations of Coleman et al. (1997) than in our study. Again, the same explanations 516 

as given for the study of Diels et al. (2004) hold for the Highfield bare fallow 517 

experiment. Note that an earlier version of RothC also underestimated C losses when 518 

old grassland was ploughed (Jenkinson et al., 1987). 519 

 520 
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Insert Figure 2 here 521 

 522 

 Figure 2 shows a higher contrast picture of the measured and simulated C 523 

changes, distinguishing between forest and maize derived C dynamics. The 524 

simulations of the forest derived C show the same pattern as observed in the 525 

simulation of total C. However, simulated C accumulation shows a good fit to the 526 

measured maize C (Table 3). 527 

 528 

Table 3 here 529 

 530 

 At Mafungautsi, Chikwaka and Pyrenean, R values show a significant (p < 531 

0.05) association between simulated and measured values. However, at Masvingo the 532 

association is not significant. Zingore et al. (2005) state that �13C values at Masvingo 533 

increase rapidly in the first years, but are not sustained because of the small returns of 534 

maize residues and the low capacity of the soil to stabilize C. It is likely that maize 535 

yields were somewhat higher in the first years and decreased after time of cultivation. 536 

This might explain the higher than simulated observations of �13C at the beginning of 537 

cultivation. In our simulations, we did not consider changing yields since there were 538 

no reliable estimates of the impact of changing yield on residue returns. Residue 539 

returns were based on RothC equilibrium runs using measured equilibrium soil C 540 

stocks. These stocks do not reflect the variability in the first years of cultivation. 541 

However, a better fit could be achieved by adjusting the inputs for the first years of 542 

the simulation. 543 

 The RMS values can be compared directly between simulations, but since no 544 

standard errors were available for the �13C values, the statistical significance of RMS 545 
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could not be assessed. The simulation of the Pyrenean site shows the least coincidence 546 

with the highest value of RMS of 610 g C m-2, compared to 204 for Chikwaka, 202 for 547 

Masvingo and 21 g C m-2 for Mafungautsi. 548 

 The calculated values of M indicate that the simulation at Mafungautsi shows 549 

the lowest bias, with a slight, consistent overestimation of 15 g C m-2. At Masvingo 550 

and Chikwaka, the model systematically underestimates soil C by 127 and 123 g C 551 

m-2 respectively. The highest bias is observed in the simulated values at the Pyrenean 552 

site, where the model overestimates soil C by 441 g C m-2. However, the bias is only 553 

statistically significant at Masvingo (p < 0.05). 554 

 These results suggest that the lack of fit between the simulations and the 555 

measurements can mainly be attributed to the simulated underestimation of forest C 556 

loss, and not to the simulation of maize C. This supports the hypothesis that there is a 557 

need to account for the accumulation of physically protected SOM under uncultivated 558 

land uses and to simulate the loss of physical protection due to cultivation. 559 

 Diels et al. (2004) found that doubling the decomposition rates of RothC to 560 

account for a faster loss of SOC gave a better fit to their observed data. However, a 561 

general increase of decomposition rates would also lead to higher plant input values in 562 

the forest equilibrium runs. For illustrative purposes we tested for the Mafungautsi 563 

and the Pyrenean site, how much change in the decomposition rates was necessary to 564 

achieve a good fit to the observed data. For the Mafungautsi site, decomposition rates 565 

of all pools needed to be multiplied by 10 to achieve a significant association for the 566 

forest derived C. SOC accumulation under maize which was previously slightly 567 

overestimated by 15 g C m-2 was now slightly underestimated by 5 g C m-2. However, 568 

there was no significant association between the simulation and the measurements 569 

anymore as in the default model application. Furthermore, simulated plant input 570 
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values for forest increased to the unrealistic value of 1010 as compared to 179 g C m-2 571 

year-1 of the default simulations and published values of between 54 and 374 g C m-2 572 

year-1. At the Pyrenean site, decomposition rates were multiplied with four to get a 573 

good association (R value of 0.99) for the forest derived C, however it was not 574 

significant. The R value for the maize derived C still shows a significant association 575 

and the coincidence improved slightly to and RMS of 568 g C m-2 but simulated 576 

values are now underestimated by 440 g C m-2. Furthermore, plant input values for 577 

forest increased to an unrealistic value of 3570 compared to 898 g C m-2 year-1 in the 578 

default simulations and MODIS derived NPP ranges of 510–810 g C m-2 year-1. 579 

Again, these results suggest, that the model needs to take into account the dynamics of 580 

physical protection and loss of physically protected SOC due to land use and land use 581 

change. A simple increase of turnover rates does not present a valid and consistent 582 

solution. 583 

 584 

3.3. Carbon dynamics of simulations including correction for the IOM content at the 585 

given site 586 

 When the adjustment of IOM is included in the simulations, the model no 587 

longer overestimates C loss towards the end of the simulations (Figure 3). The C 588 

changes appear to level off close to measured values once the model captures the 589 

rapid C loss at the beginning of the simulations. 590 

 591 

Insert Figure 3 here 592 

 593 

 Simulations with the higher IOM values also results in a change in the forest 594 

plant inputs simulated at equilibrium. These have decreased from 179, 184, 248 g C 595 
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m-2 year-1 to 108, 129 and 176 g C m-2 year-1 for Mafungautsi, Masvingo and 596 

Chikwaka, respectively. These values still lie within the range of published plant 597 

inputs of 54–374 g C m-2 year-1. 598 

 RothC estimates of steady state plant input are linearly correlated with the 599 

total active C stock. A larger active C pool leads to a higher plant input requirement 600 

than a smaller active pool, compared under the same environmental conditions. Thus, 601 

since the IOM pool was adjusted to a higher value, the “active” C pool decreases and 602 

simulated inputs became smaller as well. 603 

 These results show that the default equation for IOM given by Falloon et al. 604 

(1998) is not valid for the simulation of savannah ecosystems here. Falloon et al. 605 

(1998) noted that this equation might not be valid for savannah ecosystems. However, 606 

the values we used for our simulations lie within the 95% confidence interval of the 607 

Falloon (1998) equation (Table 4). 608 

 609 

Insert Table 4 here 610 

 611 

 In contrast, at the French site the simulation curve levels off towards the end 612 

of the simulation. The stable SOC is estimated by Balesdent et al. (1998) to be about 613 

2300 g C m-2. This relates to the IOM pool in the model, which is estimated by the 614 

Falloon (1998) equation to be 2302 g C m-2. Again, the C changes appear to level off 615 

close to measured values once the model captures the rapid C loss at the beginning of 616 

the simulations. 617 

 The IOM adjustment does not affect the simulations of soil C accumulation 618 

under maize because the IOM pool in RothC is not integrated in the decomposition 619 
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dynamic itself, but acts as a separate, inert pool that accounts for high radiocarbon 620 

ages of soils (Jenkinson et al., 1987). It is zero for the maize derived C. 621 

 622 

3.4. Carbon dynamics of simulations including C loss by erosion 623 

 For illustrative puposes, we show the simulations for only the Mafungautsi site 624 

(Fig. 4), where the IOM is adjusted and C loss by erosion is simulated. The C loss 625 

from erosion was too small to explain the high rates of decline of forest derived soil C 626 

observed in the measurements. Erosion has only a small effect on the total soil C 627 

under maize. R, RMSE and M values are 0.69, 20 g C m-2 and -14 g C m-2 compared to 628 

0.69, 21 g C m-2 and -15 g C m-2 for the default simulation, respectively. Diels et al. 629 

(2004) also suggested that a possible explanation for the discrepancy they observed 630 

between simulations and measurements was the additional losses of C due to erosion. 631 

However, even with erosion losses greater than 1200 g C m-2 year-1, they concluded 632 

that these losses were negligible compared to the C loss due to decomposition. 633 

 634 

Insert Figure 4 here 635 

 636 

3.5. Implementation of a simple approach to describe physical protection of soil C 637 

 Figure 5 shows the simulation of total soil C and the soil contained in the 638 

DPM, BIO, HUM and IOM pool. The difference between the two curves represents 639 

the C contained in the RPM pool. The measured total soil C and measured soil C 640 

within particle size fraction <50 µm, respectively are shown as points on the plot. 641 

 642 

Insert Figure 5 here 643 

 644 
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 The graph on the left hand side shows the simulations of the forest derived C. 645 

The initial fast decline can be attributed to the loss of C from the RPM pool. The 646 

initialization of the RPM pool shows close agreement to the measured C in the >50 647 

µm, whereas the sum of the pools DPM+BIO+HUM+IOM shows close agreement 648 

with the measured C in the <50 µm fraction. The RPM pool shows a similar decline in 649 

the first years to that observed in the C in the particle size fraction >50 µm. After the 650 

C in the RPM pool is depleted, the continued decline in soil C is dominated by the 651 

dynamics of the HUM pool. This is because the DPM and BIO pools contain a very 652 

small proportion of the total soil C. These remaining pools are the main cause of the 653 

underestimation of C loss as the decline of the RPM pool closely matches the decline 654 

in the soil C in the size fraction >50 µm. The results of the maize simulation (graph on 655 

the right hand site of Fig. 5) show a good agreement between the simulation and the 656 

measurements seven years after the start of the simulation. After 35 years, both curves 657 

exceed the measurements. After 35 years, the overestimation can be mainly attributed 658 

the accumulation of C in the humus pool. The accumulation in the RPM pool again 659 

shows close agreement with the amount of C in the measured POM fraction. Maize 660 

inputs for the Pyrenean site were 500 g C m-2 year-1. This value was derived from 661 

measured above ground input of 350 g C m-2 year-1 (stems and leaves) and below 662 

ground inputs of 150 g C m-2 year-1 (roots) (Balesdent at al., 1998). To give a better fit 663 

to the maize C measurements of the Pyrenean site, plant inputs need to be decreased 664 

to 350 g C m-2 year-1 (-30%). However, that does not result in an improvement of the 665 

total C simulation. Balesdent (1996) found that he had to decrease soil inputs 666 

simulated with RothC at a similar site by 17% compared to the measured values to 667 

match the measured data for maize accumulation.  668 
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 For simulation of both forest and maize derived soil C, the results suggest that 669 

the slow turnover of the HUM pool is the main cause of the discrepancy between the 670 

simulation and the measurements. Simulated forest C does not decompose quickly 671 

enough, resulting in an underestimation of soil C loss. The maize derived soil C is 672 

simulated to accumulate more rapidly in the humus pool than the measurements 673 

would suggest, which again is the result of the simulated turnover of the humus pool 674 

being too slow. It has been shown that changes to turnover rates of the RothC pools 675 

may account for processes which have previously not been included in the model 676 

(Falloon et al., 2006). However, none of these studies address processes related to the 677 

physical protection of SOC in soil. 678 

 Figure 6 shows the simulated values at the Pyrenean site after the 679 

implementation of the extra humus pool. In the original RothC model, the C flux is 680 

divided between the BIO and HUM compartment in proportions 46% and 54%, 681 

respectively. Fitting the model to set the silt-humus pool from the initial measurement 682 

of silt associated C, results in the C flux being divided into the BIO, silt-humus and 683 

clay-humus pools in proportions 46, 39 and 15%, respectively (Fig. 7). Table 5 gives 684 

the results of the statistical evaluation to compare the simulations and measurements 685 

of forest and maize derived C. Note that only the test results for the maize derived C 686 

are an independent test, because the first measurement of silt associated forest C was 687 

used to fit the new ratio of the C fluxes into BIO, silt-humus, and clay-humus pools. 688 

All correlation coefficients for the simulation of the maize derived C are 0.99, 689 

indicating a very high association between the simulation and the measurements. 690 

However, since only three measurements were available for the evaluation, the 691 

statistical values are not significant (p > 0.05). The error in the simulation of total soil 692 

C is decreased from 610 g C m-2 for the default simulations to 147 g C m-2 for the 693 
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results including the silt-humus pool. The bias of total soil C has also decreased from 694 

-441 of the default simulation down to -110 g C m-2. The slight overestimation of 110 695 

g C m-2 is not significant (p> 0.05). 696 

 697 

Insert Figure 6 here 698 

 699 

Insert Table 5 here 700 

 701 

Insert Figure 7 here 702 

 703 

 These results show that the implementation of the silt-humus pool into RothC 704 

improved the simulations, but since measurements of only three points in time were 705 

available to evaluate the results, we cannot show the improvement in statistical 706 

significance. Balesdent et al. (2000) had already suggested that most of the protected 707 

SOM occurs in the slowly decomposing pool of small sized SOM found in 708 

microaggreagates, referring explicitly to the humus pool of the RothC model. An 709 

early version of RothC included two humus pools, one representing physically 710 

stabilized OM and one representing chemically stabilized OM (Jenkinson and Rayner, 711 

1977). However, this concept was dropped and the protective effect of soil texture on 712 

decomposition dynamics was implemented by adjusting the ratio of 713 

CO2/(BIO+HUMUS) based on the cation exchange capacity of a soil. The proportions 714 

were based on experiments of Sorensen (1975) who studied the decomposition of 14C 715 

labeled plant material in soils of different textures. This effect does, therefore, account 716 

for the process of the natural binding and entrapment of OM to and within mineral 717 
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material. It does not, however, account for the mechanical disturbance of soil and 718 

consequent effect on OM decomposition. 719 

 720 

3.6. Uncertainty analysis 721 

 Results show that the general trends in the simulations are not altered by 722 

varying inputs within the range of the uncertainty. Uncertainty ranges are different for 723 

each site. Yearly average temperature and yearly sums of precipitation ranges varied 724 

between 0.67 and 1.51 ºC and 8–36% respectively. These ranges are similar to 725 

interpolation errors estimated for a 10'' climate data set of Europe. These are 13–20% 726 

for precipitation and 0.8–1.1˚C for temperature (New et al., 2002). We used 100 year 727 

average data to drive the simulations; it is possible that actual meteorological data, 728 

showing inter-annual variability, would have increased output uncertainty to a degree. 729 

Yearly sums of precipitation data do not show any significant trend (p>0.05), whereas 730 

yearly mean temperature data show a significant trend (p<0.05) at Masvingo, 731 

Chikwaka and Pyrenean of +0.8, +0.7 and +1.2 ºC. Likewise, PET values show a 732 

significant trend (p<0.05) of +60, +45 and +50 mm year-1, respectively. The effect on 733 

decomposition of these two significant trends would counteract each other as higher 734 

temperatures increase decomposition and higher PET values dry out the soil more and 735 

would decrease decomposition. Therefore, the trend would probably not be reflected 736 

in a higher decomposition of SOM. Furthermore, simulations and the course of SOM 737 

of chronoseqeunces cannot account for the site specific climatic changes because sites 738 

are not simulated over the course of time but along sites of different ages of which the 739 

measurements of the “youngest” sites (here: forest) constitute the “oldest” (initial) in 740 

terms of simulation dates. A simulation of a long term experiment with given climatic 741 

trends could certainly not be accurately simulated with average climate data as the 742 
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forest sites would have developed under a “cooler” climate than the arable sites. 743 

However, these climatic effects are not reflected in chronosequence data. Inter annual 744 

climatic variability is naturally high at the study sites, however, the effect of year to 745 

year fluctuations on SOM would be small. Figure 8 shows the spread of the 746 

simulation curves resulting from the uncertainty analysis. Results are similar at all 747 

four sites. The variability in the simulation curves is very small and the spread 748 

increases with time. Outputs of the Monte Carlo results are normally distributed at all 749 

sites (Kolmogorov-Smirnov, p>0.05) apart from at Mafungautsi which is negatively 750 

skewed. However, the distribution does not significantly deviate from a normal 751 

distribution (p>0.05). The variability in the plant input values of the equilibrium runs 752 

are small. They lie around -10 to -17% and +12 to 22% for forest and -12 to -14% and 753 

+14 to 17% for maize (Table 6). Values are normally distributed at Chikwaka for 754 

forest and maize and at Pyrenean for forest. Values at Mafungautsi and Masvingo are 755 

positively skewed (p<0.05) for forest and maize, respectively. The positive skew 756 

means that the peak of the plant input distribution is shifted towards lower values 757 

compared to a normal distribution. Lower plant input values are due to the simulation 758 

of a slower turnover. This might be a non linear response of the soil moisture 759 

decomposition modifier at very low clay values as the soil dries out quicker from a 760 

certain threshold onwards. However, this has a negligible effect on the simulation of 761 

the C dynamics afterwards and average plant input values are close to the values used 762 

in the default simulations. A small overall response of the RothC model towards 763 

climate and clay input data has also been shown by Janik et al. (2002). This shows 764 

that the results of our default simulations lie well within the range of possible results 765 

when taking input data uncertainty into account. The reason why the default 766 

simulation at Chikwaka runs along the outer limit of the uncertainty results is that the 767 
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climate data used for the default simulation represent a slightly warmer and drier 768 

climate than the average of the climate data used for the uncertainty analysis. 769 

 770 

Insert Figure 8 here 771 

 772 

Insert Table 6 here 773 

 774 

 Although the range of results due to the uncertainty in the inputs is initially 775 

small, the uncertainty in the results has a cumulative effect as the simulations 776 

continue. The effect of an input data set which reflects rather unfavourable conditions 777 

for decomposition, e.g. cold and dry, accumulates over the years. This sets the 778 

extreme boundaries for the simulation curve, and the true value lies within the 779 

minimum and maximum result. From the uncertainty analysis we can conclude that 780 

the uncertainty of the input data does not explain the discrepancy between model 781 

results and measured data, and that the model is not very sensitive to the uncertainty 782 

ranges that are relevant for the given situations.  783 

 784 

4. Conclusions 785 

 While RothC can satisfactorily predict the accumulation of maize derived C, 786 

the simulations do not capture the fast decrease in forest C that occurs during the first 787 

years of cultivation. However, when the forest and arable soils are at steady state, the 788 

calculated input of plant C to the soil compare well with plant input values obtained 789 

from estimates of NPP. This suggests that the model provides good estimates of plant 790 

inputs. 791 
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 If land use change has occurred from a uncultivated (forestry, grassland or 792 

natural) to cropped in the last 30 years, the model in its current form may not be 793 

reliable. If land use change has occurred before this time, we can assume that most of 794 

the physically protected soil C has been released into unprotected pools, and the 795 

model will provide more accurate simulations. 796 

 The new pool does not change previous RothC application results as it would 797 

be rather small under arable cropping, however, it will have a significant effect on 798 

simulations of changes from uncultivated land to cultivated and vice versa. 799 

 Having excluded other explanations for the underestimation of forest derived 800 

C losses simulated by the model, our results suggest that the physical process of 801 

disturbing the stable forest soil structure could be the source of the increased rate of 802 

decomposition. We hypothesise that this is the main explanation for the rapid C loss 803 

observed at the chronoseqeunce sites included in our study. The implementation of a 804 

simple approach to account for the loss of physically protected soil C has given good 805 

first results. However, this new approach needs further evaluation, especially to test 806 

its performance on the simulation of tillage and no-tillage as this will reveal its 807 

general applicability to simulate the dynamics of the physical protection of C. 808 

 It has also been shown that simply increasing decomposition by multiplying 809 

the turnover rates of the model pools does not present a valid solution to simulate the 810 

fast loss of forest derived C under cultivation. Simulated plant input values for the 811 

equilibrium phase under forest become unrealistically high and the accumulation of 812 

maize derived C becomes underestimated. 813 

 Our simple approach to simulate the loss of physically protected C due to the 814 

cultivation of soil is similar to the model of physical protection of Van Veen and Paul 815 

(1981). They introduced SOM pools in two states: physically protected and not 816 
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physically protected (with a reduced life time). This separation was based on a study 817 

of the protective effect of the soil matrix on the decomposition of amino acids. At that 818 

time, no experimental data were available to quantify the effect of disruption of soil 819 

by cultivation on mineralisation. Our approach now provides means to quantify the 820 

effect of physical protection and loss of physical protection on SOM decomposition. 821 

 A comparison between RothC and the model of physical protection of Hassink 822 

and Whitmore (1997) had shown that both models perform similar at soils under 823 

arable conditions (Hassink and Whitmore, 1997). The model of Hassink and 824 

Whitmore (1997) is based on the adsorption and desorption kinetics of SOM particles 825 

to clay surfaces which is also implicitly included in the RothC model. However, these 826 

dynamics do not explain the loss of C due to the disruption of soil aggregates. 827 

 Our results are in good agreement with recent studies on SOM dynamics that 828 

have focused on the biological and physiochemical processes and control of SOM 829 

stabilisation and turnover. Instead of using definitions based on chemical fractionation 830 

techniques research has moved on to assessing the location of OM in the soil structure 831 

using physical fractionation methods (Koegel-Knabner, 2006). It has been proposed 832 

by several authors that SOM turnover might be dominated by the location of SOM in 833 

the soil aggregates rather than its chemical recalcitrance (Van Veen and Paul, 1981; 834 

Balesdent, 1996; Six et al., 2000). 835 

 Our simple approach agrees with the conceptual model of soil C stabilisation 836 

developed by Six et al. (2002). He proposes that SOM turnover can be divided into 837 

three general pools: an unprotected pool which would be represented by the RPM 838 

pool, a physically protected pool which would be represented by the silt-humus pool 839 

and a bio-chemically protected soil C pool which would be represented by the clay-840 

humus and IOM pool. However, the quantitative description and parameterisation of 841 
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such a model would be far too data extensive for the current application. The major 842 

advantage of our simple approach is that it does not require any more data input than 843 

the current model and would not compromise its regional, national and global 844 

applicability.  845 

 In addition, our study has shown that the combination of 13C abundance with 846 

SOM particle-size fractionation techniques is an excellent tool for evaluating the 847 

performance of a SOM model under land use change conditions. It allowed the 848 

structural reasons for the model not providing good simulations of soil C changes 849 

after these land use change to be identified. It also provided a valuable tool for 850 

developing and testing a new implementation of physically protected C. 851 

 Our approach makes model pools measurable. This is a major step forward in 852 

the evaluation of the different, and up to now, conceptual model pools. 853 
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Figure captions 

 

Figure 1: Measured (squares plus one standard error) and default simulated total C 

stock changes (solid line) at the four chronosequence sites. 

 

Figure 2: Measured forest derived C (crosses) and maize derived C (squares) and 

simulated forest derived C (dashed line) and maize derived C (dotted line) at the four 

chronosequence sites. IOM pool calculated using the model default Falloon equation 

(Falloon et al., 1998) (dashed-dotted line). 

 

Figure 3: Measured forest derived C (crosses) and simulated forest derived C (dashed 

line) at the three African chronosequence sites. IOM pool calculated using the model 

default Falloon equation (a) and IOM pool adjusted to values given by Zingore et al. 

(2005) (b) (dashed-dotted line). 

 

Figure 4: Measured forest derived C (crosses) and maize derived C (squares) and 

simulated forest derived C (solid line), simulated forest derived C when accounting 

for ersion (dashed line), simulated maize derived C (dotted line) and simulated maize 

derived C when accounting for erosion (dotted line) at Mafungautsi. Please note that 

dotted lines for the simulation of maize derived C are visually not distinguishable and 

are therefore plotted in the same style.  

 

Figure 5: Simulated total C (dashed lines) and the sum of the C in the HUM, BIO, 

DPM and IOM pool (dotted line) for forest and maize derived C, the difference 
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between the two lines denotes the C in the RPM pool; total C measured (squares) and 

C in the soil size fraction <50 µm (stars). 

 

Figure 6: Simulated total C (dashed lines), the sum of the C in the silt-humus, clay-

humus, BIO, DPM and IOM pool (dotted line) and the sum of C in the clay-humus, 

BIO, DPM and IOM pool (solid line) for forest and maize derived C, the difference 

between the dashed and the dotted lines denotes the C in the RPM pool and the 

difference between the dotted and the solid line denotes the C in the silt-humus pool; 

total C measured (squares), C in the soil size fraction <50 µm (stars) and C in the soil size 

fraction 0–2 µm (plus). 

 

Figure 7: RothC model structure after introducing the silt-humus pool 

 
Figure 8: Graphic presentation of the uncertainty analysis results. Solid black lines 

show average, minimum and maximum simulation curves of 500 simulations. Grey 

dotted line shows the default simulations. Insets: Histograms depict the distribution of 

results at the last time step of the simulation at each site, respectively. The grey dotted 

line shows the default simulation and the grey solid line shows the mean of the 

distribution. 
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Tables 

Table 1: Model input data 

Sites / Parameters Mafungautsi Masvingo Chikwaka Pyrenean 
Clay content (%) 3 9.5 33.5 14.7 (16.1) 
Horizon depth (cm) 20 20 20 30 
SOC (g C m-2) 1950 2540 4190 22173 
IOM (g C m-2) 144 173 346 2300 
Plant input (maize) (g C 
m-2 year-1) 

12 -a -a 500 

Months of maize 
cultivation 

November - 
April 

November - 
April 

November – 
April 

June - August 

a Values are generated by a backwards model run. 
 
 
Table 2: Ranges of climate data and clay content for uncertainty analysis 

 Mafungautsi Masvingo Chikwaka Pyrenean 
Yearly mean 
average temp 
(ºC) 

21.25 20.43 19.07 11.12 

Minimum 
yearly mean 
average temp 
(ºC) 

20.83 19.39 18.53 10.6 

Maximum 
yearly mean 
average temp 
(ºC) 

21.5 20.9 19.43 11.6 

Yearly mean 
sum of 
precipitation 
(mm) 

777.1 636.1 865.7 1092.8 

Minimum of 
yearly sum 
(mm) 

662 610 768.4 934.1 

Maximum of 
yearly sum 
(mm) 

1031 662.2 977.0 1251.5 

FAO Soil 
type 

Luvic 
Arenosol 

Hapilic Lixisol Chromic Luvisol Vermic 
Haplumbrept1 

Mean clay 
(%) 

5.25 10.94 23.66 14.7 

Minimum 
clay (%) 

1 4 10 9 

Maximum 
clay (%) 

12 18 34 21 

1 US soil taxonomy 
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Table 3: Results of statistical analysis for default model simulations of maize 

derived C. 

Statistical Parameter Mafungautsi Masvingo Chikwaka Pyrenean 
R 0.69 -0.01 0.73 1.00 
RMS (g C m-2) 21 202 204 610 
M (g C m-2) -15 127 123 -441 
 
 

Table 4: IOM values using Falloon-Regression and IOM values of upper and 

lower 95% confidence interval (C.I.) levels (Falloon et al., 2000). 

Site IOM – 95% C.I.  
(g C m-2) 

IOM  
(g C m-2) 

IOM + 95% C.I. 
 (g C m-2) 

Mafungautsi 16 860 1335 
Masvingo 18 800 1681 
Chikwaka 29 1430 4079 
Pyrenean 113 2300 46700 
 
 

Table 5: Results of statistical test for the simulation of forest and maize derived 

C at the Pyrenean site using the implementation of the silt-humus pool 

Statistical Parameter Total forest 
C 

Silt forest 
C 

Clay 
forest C 

Total 
maize C 

Silt 
maize 

C 

Clay 
maize C 

R 1.001 1.001 0.86 0.99 0.99 0.99 
RMS (g C m-2) 398 1506 2067 147 129 66 
M (g C m-2) -144 -1488 -1698 -110 52 -10 
 
 

Table 6: Summary of descriptive statistics of the uncertainty analysis results for 

forest and maize plant input values 

Forest plant input (g C m-2 year-1) Maize plant input (g C m-2 year-1) Site 
Average Min Max Average Min max 

Mafungautsi 165 148 186 10 9 11 
Masvingo 176 154 204 35 30 41 
Chikwaka 266 232 305 68 59 79 
Pyrenean 899 744 1103 - - - 
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