Accepted Manuscript

Simulation of soil organic carbon response at forest cultivation sequences using ¹³C measurements

Pia Gottschalk, Jessica Bellarby, Claire Chenu, Bente Foereid, Pete Smith, Martin Wattenbach, Shamie Zingore, Jo Smith

PII:	S0146-6380(09)00100-4
DOI:	10.1016/j.orggeochem.2009.04.017
Reference:	OG 2352
To appear in:	Organic Geochemistry
Received Date:	23 November 2008
Revised Date:	10 April 2009
Accepted Date:	30 April 2009

Please cite this article as: Gottschalk, P., Bellarby, J., Chenu, C., Foereid, B., Smith, P., Wattenbach, M., Zingore, S., Smith, J., Simulation of soil organic carbon response at forest cultivation sequences using ¹³C measurements, *Organic Geochemistry* (2009), doi: 10.1016/j.orggeochem.2009.04.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Simulation of soil	organic carbon	response at forest	cultivation se	quences using
		0	A		

- 2 ¹³C measurements
- 3
- 4 Pia Gottschalk¹, Jessica Bellarby¹, Claire Chenu², Bente Foereid¹, Pete Smith¹, Martin
- 5 Wattenbach¹, Shamie Zingore³, Jo Smith¹
- 6
- 7 ¹ Institute of Biological and Environmental Sciences, School of Biological Sciences,
- 8 University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24
- 9 *3UU, UK*
- ² INAPG, UMR Bioemco, Bâtiment EGER, 78850 Thiverval Grignon, France
- ³ Tropical Soil Biology and Fertility Institute of CIAT, Chitedze Research Station, Box
- 12 158, Lilongwe, Malawi
- 13
- 14 Correspondence: Pia Gottschalk, Institute of Biological and Environmental Sciences,
- 15 School of Biological Sciences, University of Aberdeen, Cruickshank Building, St
- 16 Machar Drive, Aberdeen, AB24 3UU, UK, tel. +44 (0)1224 273810, fax +44 (0)1224
- 17 272703, e-mail: pia.gottschalk@abdn.ac.uk
- 18
- 19

20 Abstract

- 21 When deforestation is followed by continuous arable cropping, a permanent decline of
- 22 between 22 and 42% in the soil organic carbon (SOC) has been reported. This
- 23 systematic loss of soil carbon (C) is mainly attributed to the loss of physically
- 24 protected SOC. The Rothamsted Carbon model (RothC) does not include a
- 25 description of the processes of physical protection of SOC and so losses of C during

26	continuous cultivation of previously uncultivated land are not likely to be accurately
27	simulated. Our results show that in the first years following deforestation, RothC does
28	not capture the fast drop in forest derived soil C. However, the model does
29	satisfactorily simulate the changes in SOC derived from the following crops.
30	Uncertainty in input data and accounting for erosion, does not explain the
31	underestimation of decomposition after deforestation by RothC. A simple approach to
32	increase decomposition by multiplying rate constants is evaluated. This approach
33	needs high multiplication rates and leads to an overestimation of plant input values to
34	sustain SOC equilibrium levels. However, the ability of RothC to simulate changes in
35	the forest derived SOC can be greatly improved with an implementation of a simple
36	approach to account for SOC dynamics due to the loss of physically protected C. This
37	approach implements a new soil carbon pool into RothC which represents the labile
38	but protected carbon fraction which builds up under minimally disturbed land uses,
39	and which loses its protection once the soil is disturbed. The new pool is calibrated
40	using ¹³ C natural abundance analysis in conjunction with soil fractionation.
41	
42	
43	
44	Keywords: ¹³ C measurements, land use change, physical protection, Rothamsted

- 45 carbon model, RothC, soil organic carbon modelling
- 46

1. Introduction

48	During the 1990s carbon dioxide (CO ₂) emissions due to land use change are
49	estimated to have been between 0.5–2.7 Pg C yr^{-1} out of the total emissions of 7.9 Pg
50	C yr ^{-1} , contributing 6–39% of the total emissions of CO ₂ to the atmosphere (IPCC,
51	2007). Historically, emissions from land use change are estimated to have contributed
52	156 Pg C to the human induced CO ₂ emissions occurring from 1850 to 2000
53	(Houghton, 2003), equivalent to 12–35 ppm (IPCC, 2007). Houghton (2003)
54	estimated that 2.24 Pg C y^{-1} are attributable to the deforestation that occurred during
55	the 1990s, thus being the biggest contributor to emissions in the land use change
56	sector. Deforestation induces carbon (C) losses due to decay of vegetation and the
57	decomposition of soil organic matter (SOM). Available assessments of historical soil
58	C losses incorporate a high degree of uncertainty ranging from 40–537 Pg and so
59	current net fluxes from the soil to the atmosphere are not well known at any national,
60	regional or global scale (Lal, 2003). Therefore, a complete understanding of soil C
61	fluxes, especially due to deforestation and subsequent continuous cultivation is of
62	great importance in improving our estimates of C emissions from soils.
63	When forests and grasslands are converted to long term arable cropping, soil C
64	is permanently lost to the atmosphere and the soil solution. A permanent decline of
65	between 22 and 42% in the soil organic carbon (SOC) that was originally present
66	under forest has been reported by Guo and Gifford (2002) and Murty et al. (2002).
67	Soils lose most C in the first years following conversion (Houghton, 2003) until a new
68	equilibrium level is established (Houghton, 1999; Guo and Gifford, 2002). This
69	systematic loss of soil C across regions and site specific management is mainly
70	attributed to the loss of physically protected SOC (Van Veen and Paul, 1981;
71	Balesdent et al., 2000; Six et al., 2002). Physical protection of C occurs when organic

72	matter (OM) is trapped inside soil aggregates (Balesdent et al., 2000). This
73	stabilisation effect occurs due to the physical segregation of substrate and micro-
74	organisms, a reduced rate of oxygen diffusion into the aggregates and the separation
75	of microbial biomass from microbial grazers (Six et al., 2002). This C pool is very
76	sensitive to cultivation because the mechanical disturbance of the soil leads to a break
77	up of aggregates which in turn releases C and makes is accessible to decomposition
78	(Balesdent et al., 2000; Six et al., 2000; Denef et al., 2007). Here, we define the loss
79	of soil aggregate structure and subsequent release of decomposable OM as the loss of
80	physically protected SOC. Another important factor that can contribute to the decline
81	in soil C is soil erosion (Balesdent et al., 2000). However, the absolute changes in soil
82	C stocks and the temporal dynamics of the losses depend on management, climate and
83	soil type for the particular site (Allen, 1985; Guo and Gifford, 2002; Schwendenmann
84	and Pendall, 2006). To capture these complex and dynamic interactions, SOM models
85	are employed. One of the most widely used models of soil C dynamics is the
86	Rothamsted C model (RothC) (Coleman and Jenkinson, 1996). This model has been
87	evaluated under a wide range of ecosystems, climate conditions (Coleman et al., 1997;
88	Diels et al., 2004; Shirato et al., 2005; Kamoni et al., 2007) and land use change
89	(Smith et al., 1997; Cerri et al., 2007). However, the model has not been widely
90	evaluated against changes in SOC due to forest clearing followed by continuous
91	arable cropping. Long term experiments previously used to evaluate the model,
92	usually include long periods of the same or similar management practices, so do not
93	show the C loss characteristic of forest clearing as assessed here. Because RothC
94	includes neither an explicit description of the processes of physical protection of SOC
95	or soil erosion, we postulated that losses of SOC during continuous cultivation of
96	previously uncultivated land were not likely to be accurately simulated.

97 Only a few SOM models include an explicit description of physically 98 protected SOC. Van Veen and Paul (1981) introduced two states, physically protected 99 and not protected SOC into their model for long term SOC turnover. In that model, 100 protected SOC has a relatively slower decomposition rate compared to its non-101 protected counterpart. The proportion of SOM that would be protected was indicated 102 by a "protection coefficient" which was indirectly fitted to the simulation of SOC 103 dynamics in virgin and cropped soils. In grassland soils, 50% of SOC was protected 104 and under arable cropping, only 20% was protected. They hypothesised that the major 105 factor of enhanced mineralization due to cultivation is the disruption of aggregates. 106 Molina et al. (1983) used a resistant SOC pool, which is constantly formed and 107 periodically transferred to a more labile pool during cultivation events. Hassink and 108 Whitmore (1997) compared the performance of the RothC model to a model which 109 they developed to explicitly describe the dynamics of protection and loss of protection 110 of SOC. Their model is based on adsorption and desorption kinetics of SOM particles 111 to clay surfaces and the rate at which SOM becomes protected depends on the fraction 112 of the available protective capacity of a soil. The two models were applied to 113 experimental soil treatments over 20 years. The model of Hassink and Whitmore 114 (1997), which was calibrated at one of their sites, performed better for these trials, but 115 described only 5% more of the variation in the data than RothC. Furthermore, the 116 soils in their treatments were taken from arable fields and were regularly disturbed 117 during the experiment, presumably being at or close to equilibrium in terms of soil 118 aggregate structure. Their model of physical protection does not, therefore, describe 119 the dynamics of physical protection and loss of physical protection due to land use or 120 management change. We implement a simple approach to simulate the dynamics of 121 physically protected C (within aggregates) due to land use change and the loss of soil

122 C due to erosion and compare, and discuss findings in relation to other models of123 physical protection.

124	SOM models are typically evaluated against measurements of total SOC.
125	Relatively few studies have used $\delta^{13}C$ data to evaluate SOM models (e.g. Townsend
126	et al., 1995; Balesdent, 1996; Molina et al., 2001; Diels et al., 2004; Niklaus and
127	Falloon, 2006; Cerri et al., 2007). Measurements of δ^{13} C of SOC can be used to
128	distinguish between C_3 and C_4 plant derived C. C_3 and C_4 plants discriminate
129	differently between ¹² C and the natural isotope ¹³ C. C ₃ plants (most trees and herbs)
130	develop a δ^{13} C signature that ranges from -23% to -40% whereas values for C ₄ plants
131	(some tropical grasses and cereals) range from -9% to -19% (Smith and Epstein,
132	1971). These distinct signatures are preserved during the decomposition of plant
133	material in the soil. On soils where a complete shift from C_3 to C_4 plants has occurred,
134	the difference in the isotopic signatures provides a means to infer the turnover time of
135	SOM, distinguishing between the original SOM and the contribution of the
136	succeeding vegetation (Balesdent and Mariotti, 1987). Linking ¹³ C abundance with
137	SOM particle size fractionation techniques has been used by a number of different
138	workers to assess quantitative changes of C in different soil size fractions (Balesdent
139	and Mariotti, 1987; Balesdent et al., 1988, 1998; Vitorello et al., 1989; Martin et al.,
140	1990; Desjardins et al., 1994; Jastrow et al., 1996; Paul et al., 2008; Schwendenmann
141	and Pendall, 2006). However, there are only a few studies where model evaluation has
142	used soil fractionation techniques (Skjemstad et al., 2004; Zimmermann and Leifeld,
143	2007) or the combination of 13 C abundance and soil fractionation techniques
144	(Balesdent, 1996).
145	In our study we used total SOC data as well as δ^{13} C data from four

146 chronosequence sites to evaluate the RothC model. The long term response of SOC to

147	forest clearance is not, therefore, represented by a single set of measurements from
148	long term sites but instead from measurements of plots with similar soil and
149	management characteristic but of different cropping ages. This introduces an inherent
150	inconsistency in the representation of climatic drivers used in the simulation. The
151	model simulates the C dynamics along a timeline defined by the sequence of climate
152	and management. Model results are then compared to the chronosequence
153	measurements as if they were taken in a long term trial (Smith et al., 2000). To
154	account for these inaccuracies, an uncertainty analysis was carried out to estimate the
155	variability in model results.
156	The objectives of this study are (i) to evaluate RothC at forest cultivation
157	sequence sites using ¹³ C abundance measurements, (ii) to assess the uncertainty of the
158	model results due to uncertainties in the input data, (iii) to use ¹³ C natural abundance
159	in conjunction with soil fractionation to evaluate the dynamics of the C pools of
160	RothC separately from total C dynamics, (iv) to account for soil erosion, and (v) to
161	implement a simple approach to simulate the dynamics of physically protected C.
162	
163	2. Materials and Methods

164 2.1. Site description

165 The RothC model was run on four chronosequence sites, three in Zimbabwe, 166 Africa, and one in France, Europe. Climate, soils, vegetation and management of the 167 Zimbabwean and French sites and their C dynamics are described in detail in Zingore 168 et al. (2005) and Arrouays and Pelissier (1994) and Balesdent et al. (1998), 169 respectively. At the three Zimbabwean sites (hereafter referred to as Mafungautsi, 170 Masvingo and Chikwaka) miombo woodland was cleared for smallholder subsistence

171 farming cropping maize in monoculture. Miombo woodlands are mainly composed of

172	C_3 plants and maize is a C_4 plant. Therefore, the soils of the selected sites exhibit a
173	shift from C_3 to C_4 plant vegetation which enables the separation of soil C as
174	described in section 1. Inputs to the soils at all three Zimbabwean sites are minimal as
175	yields are very low (<100–300 g C m ⁻² year ⁻¹) and maize stover is often used as cattle
176	feed, or it is burned. There is no use of mineral or organic fertilizer at the selected
177	sites. The soils at the three sites represent the major soil types under smallholder
178	farming in Zimbabwe and are situated in different climatic regions of the country. The
179	French chronosequence site is situated in the Pyrenean Piedmont, hereafter referred to
180	as the "Pyrenean" site. The soil at the Pyrenean site is a thick humic acid loamy soil.
181	Mature maritime pine forest (mainly C3 plants) was cleared for intensive continuous
182	maize cropping with stalks returned to the soil, no organic fertilizer use and C returns
183	to the soil of about 500 g C m ⁻² year ⁻¹ . Table 1 gives an overview of the site
184	characteristics relevant for the model simulations.
185	
186	2.2. The Rothamsted Carbon model
187	The Rothamsted C model (RothC) was originally developed for temperate
188	ecosystems (Smith et al., 2000), although model parameters encompass the
189	temperature sensitivity of SOM decomposition under tropical conditions as the model
190	was calibrated using data from Ibadan, Nigeria (Jenkinson, 1990).
191	The RothC model includes five pools of SOM: DPM (= decomposable plant
192	material), RPM (= resistant plant material), BIO (= microbial biomass), HUM (=
193	humified OM) and IOM (= inert OM). Each pool, apart from IOM, decomposes by
194	first order kinetics and using a rate constant specific to the pool. Each pool
195	decomposes into CO ₂ , BIO and HUM. The proportion of BIO to HUM is a fixed

197	content. Less clay leads to a relatively higher loss of CO ₂ . Decomposition is sensitive
198	to the temperature, soil moisture and clay content of the soil, and so soil texture,
199	monthly climate, land use and cultivation data are the inputs to the model (Coleman
200	and Jenkinson, 1996; Smith et al., 1997). The model treats the effect of physical
201	protection due to tillage implicitly by the DPM/RPM ratio of arable land use which
202	was fitted to tilled arable soils (Jenskinson et al., 1991, 1992; Falloon, 2001). The
203	model therefore accounts for the effect of regular disturbance on decomposition rates.
204	The model also implicitly takes into account physical protection due to adsorption and
205	desorption as the decomposition efficiency depends on the clay or CEC of the soil,
206	leading to a greater protection of SOM in soils with a higher clay content.
207	Decomposition in the RothC model is also sensitive to whether the soil is bare or not.
208	Based on C ¹⁴ labelled plant material decomposition measurements in bare and
209	covered soils, Jenkinson introduced a plant retainment decomposition modifier in the
210	model, which reduces decomposition rates by 40% in soils with actively growing
211	vegetation. No reduction is assumed in soil where no vegetation is actively growing,
212	or the soil is bare (Jenkinson et al., 1987). This empirical factor is not explicitly
213	related to any physical or chemical decomposition parameters. It has been shown to
214	work well (e.g. Coleman et al., 1997), which could be due to bare soils being more
215	exposed to precipitation impacts, harsher drying-wetting cycles and higher soil
216	temperature fluctuation. The effects are also indirectly caused by mechanical
217	disturbance of the soil which again could be an indirect effect of physical protection
218	(Balesdent et al., 2000).
219	

220 2.3. Model input data

221	As site specific temperature, precipitation and open pan evaporation data were
222	not available, monthly average temperature and precipitation data were retrieved from
223	the CRU TS 2.1 global climate data set. This dataset is publicly available
224	(http://www.cru.uea.ac.uk/) (Mitchell and Jones, 2005).
225	Monthly averages over a hundred year period (1901–2000) were calculated
226	from the nearest grid values. Monthly potential evapotranspiration (ET ₀) was
227	calculated using the FAO Penman-Monteith approach (Allen et al., 1998) based on
228	the CRU monthly temperature and vapour pressure. The values were then averaged
229	over 100 years and multiplied by 1.33 to convert ET_0 derived from Penman-Monteith,
230	into open pan evaporation values (Doorenbos et al., 1986; Coleman and Jenkinson,
231	1999).
232	Management schedules, soil texture and SOC for the African sites were taken
233	from (Zingore et al., 2005) and Zingore (personal communication) (Table 1).
234	Equivalent data for the Pyrenean site were taken from Balesdent et al. (1998) and
235	Arrouays and Pelissier (1994) (Table 1).
236	
237	Insert Table 1 here
238	
239	2.4. Simulations
240	2.4.1. Default model application
241	The model was modified to distinguish between C derived from forest (C3
242	plants) and maize (C4 plants) and to compute soil δ^{13} C values of total organic C. Site
243	simulations were run on constant yearly climate data and in two consecutive steps.
244	First, the monthly soil inputs for maize were estimated, using the standard value of
245	1.44 for the DPM/RPM ratio. For the Mafungautsi site and the Pyrenean site,

246	estimates of C returned to the soil under arable conditions are given by the authors of
247	the original data, being 12 and 500 g C m ⁻² year ⁻¹ , respectively (Balesdent et al., 1998;
248	Zingore et al., 2005). For Masvingo and Chikwaka monthly soil inputs were
249	calculated by running the model to equilibrium using the total accumulated maize C,
250	which was assumed to have reached equilibrium. These values are 320 and 770 g C \sim
251	m^{-2} as given by Zingore et al. (2005). In the second step, the model was run to
252	equilibrium for forest conditions (using the standard DPM/RPM ratio of 0.25)
253	followed by the period of maize cropping in the non-equilibrium phase of the
254	simulations. For the non-equilibrium phase of the simulation, the C inputs calculated
255	in the first step were used.
256	Since the model calculates soil C inputs from total soil C, these annual values
257	plus the amount of organic C removed from the site gives net primary production
258	(Jenkinson et al., 1999). Hence, the soil C input calculated from the forest equilibrium
259	site can be compared to NPP data for the forest. The values for the maize simulations
260	can be compared to the yearly SOM returns estimated from Zingore et al. (2005).
261	
262	2.4.2. Adjusting IOM values for African sites
263	The measured $\delta^{13}C$ data of the forest derived C (Figs. 1 and 2 in Zingore et al.,
264	2005) show a steep decline in the first years of cultivation. After ca. 10–20 years the
265	decline levels off and C stocks do not change significantly. This suggests that the old
266	C is depleted in easily decomposable OM and has reached a level at which only very
267	recalcitrant C remains. Recalcitrant C is represented by the IOM pool in RothC. IOM
268	"represents a small, stable and biologically inert fraction of soil C, which has a high
269	radiocarbon age" (Falloon et al., 1998). It was originally determined from soil
270	radiocarbon data. Since these data are rare and expensive, Falloon et al. (1998)

271	developed a regression equation to estimate the size of the IOM pool from SOC.
272	However, Falloon et al. (1998) conclude that "separate models of log(IOM) and
273	log(SOC) content for each land use show significant relationships for all land uses
274	except savannah". This suggests that the IOM equation might not be valid for dry
275	miombo woodland which is a savannah ecosystem. The equations also have wide 95%
276	confidence intervals (Falloon et al., 2000), reflecting the large variation around the
277	regression line that is observed in the experimental data.
278	IOM is described chemically as a mixture of charcoal, geologically ancient
279	coal and SOC trapped irreversibly in the soil (Falloon et al., 1998). Miombo
280	woodlands are fire prone (Desanker et al., 1997) and it can be assumed that fire
281	residues such as charcoal accumulate in the soil more than in many temperate
282	ecosystems. We therefore adjusted the IOM pool in the simulations to a value close to
283	the value given for the forest derived C stocks at the equilibrium reached under
284	cultivation. These values were 860, 800 and 1460 g C m ⁻² for Mafungautsi, Masvingo
285	and Chikwaka, respectively (Zingore et al., 2005). These adjustments are supported
286	by recent findings of the relationship between measured charcoal and the IOM pool of
287	RothC when it was applied to soils of two different regions in Australia. Analyses of
288	452 Australian soil profiles yielded poor correlation between SOC and black C
289	(residue of incomplete combustion of biomass and fossil fuels). Furthermore, the
290	Falloon et al. (1998) equation underestimated the average proportion of black C by
291	13.8%, where the average of the measured values was 20.4% and the estimated value
292	was 6.6%. Default and adjusted IOM values in our study are 7.4, 8.2 and 9% and 44.1,
293	19, 44.9% for Mafungautsi, Masvingo and Chikwaka, respectively. Even the 44.1%
294	and 44.9% are well within the ranges of the coefficient of variation of the measured
295	mean black C content of the Australian soils. The authors suggest that the estimate

based on the Falloon et al. (1998) equation might not be applicable to ecosystems

297 where black C is a significant fraction of SOC.

298

299 2.4.3. Accounting for erosion

300 Erosion can account for significant soil C losses at a site. For the three

301 Zimbabwean sites, soil erosion is estimated as 1200 g soil m⁻² year⁻¹ (Zingore et al.,

302 2005). Here we use a simple approach for estimating C losses based on the soil

303 erosion rate, SOC content (Van Oost et al., 2007) and a C enrichment factor (Kniesel,

304 1980). As total soil C decreases over time, the amount of C in 1200 g soil decreases as

305 well because the percentage C content per unit soil decreases over time. Furthermore,

306 the amount of C in the 1200 g soil m^{-2} that is eroded each year, follows the same first

307 order kinetic decline as total C. Total C decline is based on the C content in x g of soil

308 in 20 cm depth per hectare. The relative dynamic is the same as in 1200 g soil. Thus,

309 using the rate constants for a single exponential function estimated by Zingore et al.

310 (2005), we calculated the C lost each year. The percentage C loss amounted to ca.

311 0.4% of the total C per year for each site. The enrichment factor is calculated as

312 7.4*(1000*soil loss)^{-0.2} (Kniesel, 1980) and equates here to 1.13. We implemented

this simple approach in RothC by subtracting 0.4%*1.13 of the C from each pool each

314 year. At the Pyrenean site, no erosion is reported so no erosion term was used.

315

316 2.4.4. Accounting for "physically protected" C

At the Pyrenean chronosequence site Balesdent et al. (1998) studied the effect of soil disturbance on SOC dynamics in several particle size fractions. They showed that cultivation affects C dynamics in all particle size fractions. The fractions used by Balesdent (1998) have been shown in other studies to correspond closely to the model

321	pools used in RothC (Balesdent, 1996; Skjemstad et al., 2004). Therefore, we used
322	their data and findings to evaluate the C dynamics per model pool. The C contents of
323	the different model pools were compared to C contents measured in the different
324	particle size fractions: the C of the RPM pool was compared to the C of particle sizes
325	>50 μ m (particulate organic matter (POM)) and the sum of C in the DPM, BIO, HUM
326	and IOM pool was compared to the C associated with particle sizes $<50 \mu m$.
327	Balesdent et al. (1998) show that SOC in the size fraction $<50 \ \mu m$ is made up
328	of the relatively rapidly decomposing pool of silt associated C, and a relatively slowly
329	decomposing pool of clay associated C. The measured turnover of the clay associated
330	C has a decay constant of 0.03 year ⁻¹ (Balesdent et al., 1998). This value is close to
331	the decay constant of the HUM pool of RothC (0.02 year ⁻¹ ; Coleman and Jenkinson,
332	1999). Hence, these pools match closely in terms of decomposition dynamics. The silt
333	associated C has a measured decay constant of 0.12 year-1 but initially is also
334	represented by the humus pool of the model. The Balesdent et al. (1998) analysis
335	shows that the C in the silt size fraction declines almost as rapidly as that in the POM
336	fraction. We hypothesized that we could represent the silt size fraction by an extra
337	pool, giving it the decomposition rate of the HUM pool for the time under undisturbed
338	land use and a decomposition rate similar to the RPM pool (0.3 year ⁻¹) for the time
339	under cultivation, to simulate the loss of physically protected C. We will refer to this
340	extra pool as the "silt-humus" pool and the remaining HUM pool as the "clay-humus"
341	pool. Each SOC pool of RothC would now decompose into BIO, silt-humus and clay-
342	humus. The initial size of the silt pool was fitted to the amount of C in the silt size
343	fraction under forest (RothC equilibrium run for forest conditions) by adjusting the
344	proportions of C that decomposes into the silt-humus pool and the clay-humus pool.
345	The sum of the two proportions equals the proportion that was previously flowing

only into HUM. The silt-humus pool would represent the labile fraction of the

protected SOC under undisturbed land use and would change to a non-protected SOCpool under cultivation.

349 This concept is different from the concept of the model of physical protection 350 developed by Hassink and Whitmore (1997). In their model, total OM cycles between 351 a non-protected and protected SOM pool, where OM only decomposes in the non-352 protected pool. The protected pool is therefore similar in concept to the IOM pool of 353 RothC, however in RothC IOM is not linked to the other active SOC pools. In the 354 model of Hassink and Whitmore (1997) the rate of protection depends on the amount 355 of free OM and the protective capacity of the soil. This parameter is linearly 356 correlated with the soil's clay content. The rate at which SOC loses its protection is 357 represented by a desorption rate constant. Both rate constants and the protective 358 capacity of the soil are indirectly fitted to soil C measurements of long term arable 359 soils. Therefore, their model parameters are only calibrated for arable soils with no 360 land use change.

361 Our concept is more similar to the model of Van Veen and Paul (1981) which 362 introduces SOM pools in two states: protected (e.g. under grassland) and not protected 363 (e.g. under cropping) and where OM decomposes slower in the protected pool. This 364 would relate to the new silt-humus pool in RothC, which is protected in non-disturbed 365 soils (here forest) and loses its protection in cultivated soils. Also, the decomposition 366 rate constant of the silt-humus pool decreases in non-disturbed soils.

The approach taken by Molina et al. (1983) is again different from our approach as in
their model, loss of physical protection is represented by an occasional transfer of C
from a resistant pool to a more labile pool at cultivation events.

371 2.5. Evaluation - Statistical analysis

372 Model results at all four chronosequence sites were evaluated against total

373 organic C and against forest and maize derived C separately.

The model results were evaluated statistically using the approach proposed by

375 Smith et al. (1996, 1997). The degree of association between simulated and measured

376 values was determined using the correlation coefficient (R), and the significance of

377 the correlation was assessed using a Student's t test. This tells us whether the two sets

378 of data have the same trend, and is important if the results are to be extrapolated

beyond the scope of the experiment. Values for *R* range from -1 to +1. Values close to

380 -1 indicate a negative correlation between simulations and measurements, Values of 0

381 indicate no correlation and values close to +1 indicate a positive correlation (Smith et

al., 1996; Smith and Smith, 2007).

The coincidence between the measured and simulated values was assessed by calculating the root mean squared deviation (*RMS*) (Smith et al., 2002; Smith and Smith, 2007). This is the average total difference between measured and simulated values and is given in the same units as the analysed data. The lower the value of *RMS*, the more accurate the simulation.

The bias in the simulations with respect to the measurements was calculated as the mean difference (M) (Addiscott and Whitmore, 1987). M does not include a square term, so simulated values above and below the measurements cancel each other out. Therefore, inconsistent errors will not be considered and values of M will be either positive or negative if the simulation results are biased. M will be zero if there is no difference between simulated and measured values. The significance of Mcan be tested using a Student's t test (Smith et al., 1996, 1997; Smith and Smith,

395 2007).

396

397 2.6. Uncertainty analysis

398	Using chronosequence data as a surrogate for long term experimental data in
399	model evaluation is inherently uncertain as space is used to substitute for time.
400	Samples are taken from different plots, reflecting different points in time after a land
401	use or management change, instead of taking samples from the same plot over time.
402	In addition, inaccuracies are introduced in the simulations because the simulations
403	must be based on average climate data rather than a continuously varying climate. To
404	account for these uncertainties in the model evaluation, the response of the model
405	towards possible variations in input data was assessed by an uncertainty analysis.
406	The uncertainty analysis followed a Monte Carlo approach. Ranges of input
407	data were defined and sampled 500 times using Latin Hypercube Sampling. RothC
408	was run on the 500 samples, each run using a different combination of input data. This
409	approach was chosen to encompass the interaction of input data in the model results.
410	The uncertainty ranges of the driving variables temperature, precipitation and clay
411	content were set according to information from the literature and electronic databases.
412	All ranges were assumed to be uniformly distributed.
413	Climate uncertainty ranges for the sites in Zimbabwe were based on minimum
414	and maximum yearly values given by (1) CRU 100 year and 30 year (1961–1990)
415	average, (2) MarkSim weather generator (Jones and Thornton, 2000) and (3) data
416	from the Zimbabwe Meteorologic Service Department (ZMSD) (supplied by S.
417	Zingore, personal communication) (Table 2). For the Pyrenean site, only CRU 100
418	year average data were available. To generate uncertainty ranges, we used the average
419	relative ranges of the Zimbabwean sites.

421 Insert Table 2 here

423	Uncertainty ranges for clay were based on minimum and maximum values
424	given in the FAO data base for given soil types (Batjes, 2002). Only the soil types of
425	the African sites are present in that data base. Measured standard deviations of the
426	clay content by Balesdent et al. (1998) are comparably small, so we interpolated the
427	minimum and maximum values given for the African sites to the Pyrenean site so as
428	to obtain comparable ranges. Ranges are given in Table 2.
429	\mathcal{O}^{*}
430	3. Results and discussion
431	3.1. Plant input estimation
432	Plant input for maize simulations at Masvingo and Chikwaka were estimated
433	by the model to be 36 and 63 g C m ⁻² year ⁻¹ , respectively, and 11 g C m ⁻² year ⁻¹ for
434	Mafungautsi when run in the same mode. SOC under maize at the Pyrenean site had
435	not reached equilibrium (Arrouays and Pelissier, 1994) so could not be used to
436	calculate plant input values by running the model to equilibrium.
437	Maize plant input values for Masvingo and Chikwaka can only be compared
438	relative to the estimate given by Zingore et al. (2005) for the Mafungautsi site, which
439	is 12 g C m ⁻² year ⁻¹ . Similarly derived estimates for Masvingo and Chikwaka are
440	highly uncertain, as stated by Zingore et al. (2005). The deviation in the values
441	simulated at Masvingo and Chikwaka from the measurements at Mafungautsi can be
442	explained by considering the differences in the sites. Masvingo has a higher clay
443	content and supports higher average yields than Mafungautsi (Zingore et al., 2005). It
444	can be assumed that the finer textured soil has a better moisture regime and inherent
445	soil fertility which results in the higher observed crop yields, and therefore higher C

446	returns to the soil. These higher soil inputs sustain the observed higher C stock.
447	Average decomposition rates are presumably slower in the clay soil than in the sandy
448	soil and simulated C returns should be lower in the clay soil than in the sand soil.
449	However, that would only be true if the C stocks in the two different soils are similar.
450	The total difference of maize C stock in the Mafungautsi soil and the Masvingo soil is
451	240 g C ha ⁻¹ , being 80 g C ha ⁻¹ and 320 g C ha ⁻¹ for Mafungautsi and Masvingo,
452	respectively. Similarly, at Chikwaka, where the clay and C contents (770 g C ha ⁻¹) are
453	even higher than at Masvingo, the simulated C returns are higher, which again
454	correlates with even higher average yields as Chikwaka than at Masvingo. Confidence
455	in these values is increased by the good fit between the maize derived C simulations
456	and the measured values (see section 3.2. and Table 3). It can therefore be assumed
457	that the simulated higher returns for the finer textured soil are due to the higher C
458	stock, and these are only partly balanced by a slower average turnover.
459	Plant input values for the equilibrium run under forest were 179, 184, 248 and
460	898 g C m ⁻² year ⁻¹ for Mafungautsi, Masvingo, Chikwaka and the Pyrenean sites,
461	respectively. However, there are no measurements of NPP for comparison with
462	simulated plant input values for forest. We therefore compare our simulated values for
463	the African sites to data published in related literature. Frost (1996) estimates net
464	biomass production between 120 and 200 g m ⁻² year ⁻¹ for dry miombo woodlands,
465	corresponding to 54 and 90 g C m ⁻² year ⁻¹ . Brown et al. (1994) gives an estimate of
466	368 g C m ⁻² year ⁻¹ , as a combined value of above and below ground input to a dry
467	miombo woodland site in Zimbabwe. Similarly, Jenkinson et al. (1999) simulated a
468	plant input of 374 g C m ⁻² year ⁻¹ for a natural woodland site in Zambia, on a Haplic
469	Ferrasol, with an annual rainfall of 1245 mm within a single wet season, November to
470	April. The values estimated by the model (179, 184, 248 g C m ⁻² year ⁻¹) lie well

471 within the published ranges of estimated plant inputs of miombo woodlands (54 to 472 $374 \text{ g C m}^{-2} \text{ year}^{-1}$).

473	For the Pyrenean site estimates for forest above ground plant inputs are given
474	by Balesdent et al. (1998) to be 150–250 g C m ⁻² year ⁻¹ as leaves, fruit and small
475	branches. These values refer to measurements at forest stands in the same region. In
476	forests, fine root turnover can be estimated to be approximately the same amount as
477	litter fall (Zianis et al., 2005), which would amount to ca. 300–500 g C m ⁻² year ⁻¹ of
478	total plant inputs. The MODIS satellite derived NPP values (Running et al., 2004) for
479	forest stands in the same region were extracted and range between 510–810 g C m ⁻²
480	year ⁻¹ for the three sites in 2000 and 2002. At 898 g C m ⁻² year ⁻¹ , the model estimates
481	of plant inputs under forests at the Pyrenean site are slightly higher than these
482	measurements (150–810 g C m ⁻² year ⁻¹).

483

484 3.2. Carbon dynamics of simulations without adjustment of IOM for the specific site,

485 simulation of erosion or physical protection

486 The results of simulations not including erosion or physical protection suggest

that RothC does not capture the soil C response after forest clearing for continuous

488 cropping, neither in the tropics nor in the temperate ecosystem.

489 The default model simulations for the sites in Zimbabwe of total C dynamics

490 (Fig. 1) show that the rapid loss of soil C in the first years of cultivation is not

- 491 captured by the model and that the continuous C loss towards the end of the
- 492 simulation is overestimated and does not reach a plateau as can be seen in the
- 493 measured data (Figs.1 and 2 in Zingore et al., 2005). Simulated forest derived C
- 494 would eventually level off at the level of IOM, as it does not receive any new plant
- 495 inputs.

4	9	6
	/	v

497 Insert Figure 1 here

498

499	This was a surprising result as RothC has been shown to simulate
500	deforestation well in the Brazilian Amazon region (Cerri et al., 2007). However, these
501	sites were converted to well managed pastures and do not exhibit a substantial C loss.
502	Diels et al. (2004) applied RothC in a sub-humid tropical climate. Their results show
503	that RothC also underestimates C losses compared to measured values. However,
504	several years of grassland precede the simulated cropping experiments and we
505	hypothesise that the same explanation holds for the findings of Diels et al. (2004) as
506	for the experiments studied here. Under undisturbed grassland, the SOC became
507	physically protected and accumulated in a labile, though protected, C pool. This C
508	decreased rapidly once the cropping experiments started, and RothC did not capture
509	this dynamic. Similar modelling results were shown by Coleman et al. (1997) when
510	the RothC model was applied to the Highfield bare fallow experiment in Rothamsted,
511	England. That site was grazed grassland for several hundred years until it was
512	ploughed and converted to bare fallow. RothC underestimated C loss after the
513	conversion. Moreover, the plant retainment factor was set to 1.0 in these simulations,
514	compared to the set up in our study where only half of the year was assumed to
515	exhibit bare soil conditions. Therefore, decomposition was even relatively faster in the
516	simulations of Coleman et al. (1997) than in our study. Again, the same explanations
517	as given for the study of Diels et al. (2004) hold for the Highfield bare fallow
518	experiment. Note that an earlier version of RothC also underestimated C losses when
519	old grassland was ploughed (Jenkinson et al., 1987).

521 Insert Figure 2 here

522

523	Figure 2 shows a higher contrast picture of the measured and simulated C
524	changes, distinguishing between forest and maize derived C dynamics. The
525	simulations of the forest derived C show the same pattern as observed in the
526	simulation of total C. However, simulated C accumulation shows a good fit to the
527	measured maize C (Table 3).
528	
529	Table 3 here
530	
531	At Mafungautsi, Chikwaka and Pyrenean, R values show a significant (p <
532	0.05) association between simulated and measured values. However, at Masvingo the
533	association is not significant. Zingore et al. (2005) state that $\delta^{13}C$ values at Masvingo
534	increase rapidly in the first years, but are not sustained because of the small returns of
535	maize residues and the low capacity of the soil to stabilize C. It is likely that maize
536	yields were somewhat higher in the first years and decreased after time of cultivation.
537	This might explain the higher than simulated observations of $\delta^{13}C$ at the beginning of
538	cultivation. In our simulations, we did not consider changing yields since there were
539	no reliable estimates of the impact of changing yield on residue returns. Residue
540	returns were based on RothC equilibrium runs using measured equilibrium soil C
541	stocks. These stocks do not reflect the variability in the first years of cultivation.
542	However, a better fit could be achieved by adjusting the inputs for the first years of
543	the simulation.
544	The RMS values can be compared directly between simulations, but since no

545 standard errors were available for the δ^{13} C values, the statistical significance of *RMS*

could not be assessed. The simulation of the Pyrenean site shows the least coincidence with the highest value of *RMS* of 610 g C m⁻², compared to 204 for Chikwaka, 202 for Masvingo and 21 g C m⁻² for Mafungautsi.

549 The calculated values of M indicate that the simulation at Mafungautsi shows the lowest bias, with a slight, consistent overestimation of 15 g C m⁻². At Masvingo 550 551 and Chikwaka, the model systematically underestimates soil C by 127 and 123 g C 552 m^{-2} respectively. The highest bias is observed in the simulated values at the Pyrenean site, where the model overestimates soil C by 441 g C m^{-2} . However, the bias is only 553 554 statistically significant at Masvingo (p < 0.05). 555 These results suggest that the lack of fit between the simulations and the 556 measurements can mainly be attributed to the simulated underestimation of forest C 557 loss, and not to the simulation of maize C. This supports the hypothesis that there is a 558 need to account for the accumulation of physically protected SOM under uncultivated 559 land uses and to simulate the loss of physical protection due to cultivation. 560 Diels et al. (2004) found that doubling the decomposition rates of RothC to 561 account for a faster loss of SOC gave a better fit to their observed data. However, a

562 general increase of decomposition rates would also lead to higher plant input values in 563 the forest equilibrium runs. For illustrative purposes we tested for the Mafungautsi 564 and the Pyrenean site, how much change in the decomposition rates was necessary to 565 achieve a good fit to the observed data. For the Mafungautsi site, decomposition rates 566 of all pools needed to be multiplied by 10 to achieve a significant association for the 567 forest derived C. SOC accumulation under maize which was previously slightly overestimated by 15 g C m⁻² was now slightly underestimated by 5 g C m⁻². However, 568 569 there was no significant association between the simulation and the measurements 570 anymore as in the default model application. Furthermore, simulated plant input

571	values for forest increased to the unrealistic value of 1010 as compared to 179 g C m ⁻²
572	year ⁻¹ of the default simulations and published values of between 54 and 374 g C m ⁻²
573	year ⁻¹ . At the Pyrenean site, decomposition rates were multiplied with four to get a
574	good association (R value of 0.99) for the forest derived C, however it was not
575	significant. The R value for the maize derived C still shows a significant association
576	and the coincidence improved slightly to and <i>RMS</i> of 568 g C m ⁻² but simulated
577	values are now underestimated by 440 g C m ⁻² . Furthermore, plant input values for
578	forest increased to an unrealistic value of 3570 compared to 898 g C m ⁻² year ⁻¹ in the
579	default simulations and MODIS derived NPP ranges of 510–810 g C m ⁻² year ⁻¹ .
580	Again, these results suggest, that the model needs to take into account the dynamics of
581	physical protection and loss of physically protected SOC due to land use and land use
582	change. A simple increase of turnover rates does not present a valid and consistent
583	solution.
584	
585	3.3. Carbon dynamics of simulations including correction for the IOM content at the
586	given site
587	When the adjustment of IOM is included in the simulations, the model no
588	longer overestimates C loss towards the end of the simulations (Figure 3). The C
589	changes appear to level off close to measured values once the model captures the
590	rapid C loss at the beginning of the simulations.
591	
592	Insert Figure 3 here
593	
594	Simulations with the higher IOM values also results in a change in the forest
595	plant inputs simulated at equilibrium. These have decreased from 179, 184, 248 g C

596	m^{-2} year ⁻¹ to 108, 129 and 176 g C m^{-2} year ⁻¹ for Mafungautsi, Masvingo and
597	Chikwaka, respectively. These values still lie within the range of published plant
598	inputs of 54–374 g C m ⁻² year ⁻¹ .
599	RothC estimates of steady state plant input are linearly correlated with the
600	total active C stock. A larger active C pool leads to a higher plant input requirement
601	than a smaller active pool, compared under the same environmental conditions. Thus,
602	since the IOM pool was adjusted to a higher value, the "active" C pool decreases and
603	simulated inputs became smaller as well.
604	These results show that the default equation for IOM given by Falloon et al.
605	(1998) is not valid for the simulation of savannah ecosystems here. Falloon et al.
606	(1998) noted that this equation might not be valid for savannah ecosystems. However,
607	the values we used for our simulations lie within the 95% confidence interval of the
608	Falloon (1998) equation (Table 4).

609

610 Insert Table 4 here

611

In contrast, at the French site the simulation curve levels off towards the end of the simulation. The stable SOC is estimated by Balesdent et al. (1998) to be about 2300 g C m⁻². This relates to the IOM pool in the model, which is estimated by the Falloon (1998) equation to be 2302 g C m⁻². Again, the C changes appear to level off close to measured values once the model captures the rapid C loss at the beginning of the simulations.

618 The IOM adjustment does not affect the simulations of soil C accumulation619 under maize because the IOM pool in RothC is not integrated in the decomposition

620	dynamic itself, but acts as a separate, inert pool that accounts for high radiocarbon
621	ages of soils (Jenkinson et al., 1987). It is zero for the maize derived C.
622	
623	3.4. Carbon dynamics of simulations including C loss by erosion
624	For illustrative puposes, we show the simulations for only the Mafungautsi site
625	(Fig. 4), where the IOM is adjusted and C loss by erosion is simulated. The C loss
626	from erosion was too small to explain the high rates of decline of forest derived soil C
627	observed in the measurements. Erosion has only a small effect on the total soil C
628	under maize. R, RMSE and M values are 0.69, 20 g C m ⁻² and -14 g C m ⁻² compared to
629	0.69, 21 g C m ⁻² and -15 g C m ⁻² for the default simulation, respectively. Diels et al.
630	(2004) also suggested that a possible explanation for the discrepancy they observed
631	between simulations and measurements was the additional losses of C due to erosion.
632	However, even with erosion losses greater than 1200 g C m ⁻² year ⁻¹ , they concluded
633	that these losses were negligible compared to the C loss due to decomposition.
634	
635	Insert Figure 4 here
636	Ó
637	3.5. Implementation of a simple approach to describe physical protection of soil C
638	Figure 5 shows the simulation of total soil C and the soil contained in the
639	DPM, BIO, HUM and IOM pool. The difference between the two curves represents
640	the C contained in the RPM pool. The measured total soil C and measured soil C
641	within particle size fraction $<50 \ \mu m$, respectively are shown as points on the plot.
642	
643	Insert Figure 5 here
644	

645	The graph on the left hand side shows the simulations of the forest derived C.
646	The initial fast decline can be attributed to the loss of C from the RPM pool. The
647	initialization of the RPM pool shows close agreement to the measured C in the >50
648	μ m, whereas the sum of the pools DPM+BIO+HUM+IOM shows close agreement
649	with the measured C in the $<50 \mu m$ fraction. The RPM pool shows a similar decline in
650	the first years to that observed in the C in the particle size fraction >50 μ m. After the
651	C in the RPM pool is depleted, the continued decline in soil C is dominated by the
652	dynamics of the HUM pool. This is because the DPM and BIO pools contain a very
653	small proportion of the total soil C. These remaining pools are the main cause of the
654	underestimation of C loss as the decline of the RPM pool closely matches the decline
655	in the soil C in the size fraction >50 μ m. The results of the maize simulation (graph on
656	the right hand site of Fig. 5) show a good agreement between the simulation and the
657	measurements seven years after the start of the simulation. After 35 years, both curves
658	exceed the measurements. After 35 years, the overestimation can be mainly attributed
659	the accumulation of C in the humus pool. The accumulation in the RPM pool again
660	shows close agreement with the amount of C in the measured POM fraction. Maize
661	inputs for the Pyrenean site were 500 g C m ⁻² year ⁻¹ . This value was derived from
662	measured above ground input of 350 g C m ⁻² year ⁻¹ (stems and leaves) and below
663	ground inputs of 150 g C m ⁻² year ⁻¹ (roots) (Balesdent at al., 1998). To give a better fit
664	to the maize C measurements of the Pyrenean site, plant inputs need to be decreased
665	to 350 g C m ⁻² year ⁻¹ (-30%). However, that does not result in an improvement of the
666	total C simulation. Balesdent (1996) found that he had to decrease soil inputs
667	simulated with RothC at a similar site by 17% compared to the measured values to
668	match the measured data for maize accumulation.

669	For simulation of both forest and maize derived soil C, the results suggest that
670	the slow turnover of the HUM pool is the main cause of the discrepancy between the
671	simulation and the measurements. Simulated forest C does not decompose quickly
672	enough, resulting in an underestimation of soil C loss. The maize derived soil C is
673	simulated to accumulate more rapidly in the humus pool than the measurements
674	would suggest, which again is the result of the simulated turnover of the humus pool
675	being too slow. It has been shown that changes to turnover rates of the RothC pools
676	may account for processes which have previously not been included in the model
677	(Falloon et al., 2006). However, none of these studies address processes related to the
678	physical protection of SOC in soil.
679	Figure 6 shows the simulated values at the Pyrenean site after the
680	implementation of the extra humus pool. In the original RothC model, the C flux is
681	divided between the BIO and HUM compartment in proportions 46% and 54%,
682	respectively. Fitting the model to set the silt-humus pool from the initial measurement
683	of silt associated C, results in the C flux being divided into the BIO, silt-humus and
684	clay-humus pools in proportions 46, 39 and 15%, respectively (Fig. 7). Table 5 gives
685	the results of the statistical evaluation to compare the simulations and measurements
686	of forest and maize derived C. Note that only the test results for the maize derived C
687	are an independent test, because the first measurement of silt associated forest C was
688	used to fit the new ratio of the C fluxes into BIO, silt-humus, and clay-humus pools.
689	All correlation coefficients for the simulation of the maize derived C are 0.99,
690	indicating a very high association between the simulation and the measurements.
691	However, since only three measurements were available for the evaluation, the
692	statistical values are not significant ($p > 0.05$). The error in the simulation of total soil
693	C is decreased from 610 g C m ⁻² for the default simulations to 147 g C m ⁻² for the

694 results including the silt-humus pool. The bias of total soil C has also decreased from -441 of the default simulation down to -110 g C m⁻². The slight overestimation of 110 695 g C m⁻² is not significant (p > 0.05). 696 697 698 Insert Figure 6 here 699 700 Insert Table 5 here 701 702 Insert Figure 7 here 703 These results show that the implementation of the silt-humus pool into RothC 704 705 improved the simulations, but since measurements of only three points in time were 706 available to evaluate the results, we cannot show the improvement in statistical 707 significance. Balesdent et al. (2000) had already suggested that most of the protected 708 SOM occurs in the slowly decomposing pool of small sized SOM found in 709 microaggreagates, referring explicitly to the humus pool of the RothC model. An 710 early version of RothC included two humus pools, one representing physically 711 stabilized OM and one representing chemically stabilized OM (Jenkinson and Rayner, 712 1977). However, this concept was dropped and the protective effect of soil texture on 713 decomposition dynamics was implemented by adjusting the ratio of 714 $CO_2/(BIO+HUMUS)$ based on the cation exchange capacity of a soil. The proportions 715 were based on experiments of Sorensen (1975) who studied the decomposition of ${}^{14}C$

- were based on experiments of Sorensen (1975) who studied the decomposition of the
- 716 labeled plant material in soils of different textures. This effect does, therefore, account
- 717 for the process of the natural binding and entrapment of OM to and within mineral

material. It does not, however, account for the mechanical disturbance of soil andconsequent effect on OM decomposition.

720

721 3.6. Uncertainty analysis

722 Results show that the general trends in the simulations are not altered by 723 varying inputs within the range of the uncertainty. Uncertainty ranges are different for 724 each site. Yearly average temperature and yearly sums of precipitation ranges varied 725 between 0.67 and 1.51 °C and 8–36% respectively. These ranges are similar to 726 interpolation errors estimated for a 10" climate data set of Europe. These are 13–20% 727 for precipitation and 0.8–1.1°C for temperature (New et al., 2002). We used 100 year 728 average data to drive the simulations; it is possible that actual meteorological data, 729 showing inter-annual variability, would have increased output uncertainty to a degree. 730 Yearly sums of precipitation data do not show any significant trend (p>0.05), whereas 731 yearly mean temperature data show a significant trend (p<0.05) at Masvingo, 732 Chikwaka and Pyrenean of +0.8, +0.7 and +1.2 °C. Likewise, PET values show a 733 significant trend (p<0.05) of +60, +45 and +50 mm year⁻¹, respectively. The effect on 734 decomposition of these two significant trends would counteract each other as higher 735 temperatures increase decomposition and higher PET values dry out the soil more and 736 would decrease decomposition. Therefore, the trend would probably not be reflected 737 in a higher decomposition of SOM. Furthermore, simulations and the course of SOM 738 of chronosequences cannot account for the site specific climatic changes because sites 739 are not simulated over the course of time but along sites of different ages of which the 740 measurements of the "youngest" sites (here: forest) constitute the "oldest" (initial) in 741 terms of simulation dates. A simulation of a long term experiment with given climatic 742 trends could certainly not be accurately simulated with average climate data as the

743 forest sites would have developed under a "cooler" climate than the arable sites. 744 However, these climatic effects are not reflected in chronosequence data. Inter annual 745 climatic variability is naturally high at the study sites, however, the effect of year to 746 year fluctuations on SOM would be small. Figure 8 shows the spread of the 747 simulation curves resulting from the uncertainty analysis. Results are similar at all 748 four sites. The variability in the simulation curves is very small and the spread 749 increases with time. Outputs of the Monte Carlo results are normally distributed at all 750 sites (Kolmogorov-Smirnov, p>0.05) apart from at Mafungautsi which is negatively 751 skewed. However, the distribution does not significantly deviate from a normal 752 distribution (p>0.05). The variability in the plant input values of the equilibrium runs 753 are small. They lie around -10 to -17% and +12 to 22% for forest and -12 to -14% and 754 +14 to 17% for maize (Table 6). Values are normally distributed at Chikwaka for 755 forest and maize and at Pyrenean for forest. Values at Mafungautsi and Masvingo are 756 positively skewed (p<0.05) for forest and maize, respectively. The positive skew 757 means that the peak of the plant input distribution is shifted towards lower values 758 compared to a normal distribution. Lower plant input values are due to the simulation 759 of a slower turnover. This might be a non linear response of the soil moisture 760 decomposition modifier at very low clay values as the soil dries out quicker from a 761 certain threshold onwards. However, this has a negligible effect on the simulation of 762 the C dynamics afterwards and average plant input values are close to the values used 763 in the default simulations. A small overall response of the RothC model towards 764 climate and clay input data has also been shown by Janik et al. (2002). This shows 765 that the results of our default simulations lie well within the range of possible results 766 when taking input data uncertainty into account. The reason why the default 767 simulation at Chikwaka runs along the outer limit of the uncertainty results is that the

768 climate data used for the default simulation represent a slightly warmer and drier

climate than the average of the climate data used for the uncertainty analysis.

770

771 Insert Figure 8 here

772

773 Insert Table 6 here

774

775 Although the range of results due to the uncertainty in the inputs is initially 776 small, the uncertainty in the results has a cumulative effect as the simulations 777 continue. The effect of an input data set which reflects rather unfavourable conditions 778 for decomposition, e.g. cold and dry, accumulates over the years. This sets the 779 extreme boundaries for the simulation curve, and the true value lies within the 780 minimum and maximum result. From the uncertainty analysis we can conclude that 781 the uncertainty of the input data does not explain the discrepancy between model 782 results and measured data, and that the model is not very sensitive to the uncertainty 783 ranges that are relevant for the given situations.

784

785 **4. Conclusions**

While RothC can satisfactorily predict the accumulation of maize derived C, the simulations do not capture the fast decrease in forest C that occurs during the first years of cultivation. However, when the forest and arable soils are at steady state, the calculated input of plant C to the soil compare well with plant input values obtained from estimates of NPP. This suggests that the model provides good estimates of plant inputs.

If land use change has occurred from a uncultivated (forestry, grassland or natural) to cropped in the last 30 years, the model in its current form may not be reliable. If land use change has occurred before this time, we can assume that most of the physically protected soil C has been released into unprotected pools, and the model will provide more accurate simulations.

The new pool does not change previous RothC application results as it would
be rather small under arable cropping, however, it will have a significant effect on
simulations of changes from uncultivated land to cultivated and vice versa.

800 Having excluded other explanations for the underestimation of forest derived 801 C losses simulated by the model, our results suggest that the physical process of 802 disturbing the stable forest soil structure could be the source of the increased rate of 803 decomposition. We hypothesise that this is the main explanation for the rapid C loss 804 observed at the chronosequence sites included in our study. The implementation of a 805 simple approach to account for the loss of physically protected soil C has given good 806 first results. However, this new approach needs further evaluation, especially to test 807 its performance on the simulation of tillage and no-tillage as this will reveal its 808 general applicability to simulate the dynamics of the physical protection of C. 809 It has also been shown that simply increasing decomposition by multiplying

810 the turnover rates of the model pools does not present a valid solution to simulate the 811 fast loss of forest derived C under cultivation. Simulated plant input values for the 812 equilibrium phase under forest become unrealistically high and the accumulation of 813 maize derived C becomes underestimated.

814 Our simple approach to simulate the loss of physically protected C due to the 815 cultivation of soil is similar to the model of physical protection of Van Veen and Paul 816 (1981). They introduced SOM pools in two states: physically protected and not

817 physically protected (with a reduced life time). This separation was based on a study 818 of the protective effect of the soil matrix on the decomposition of amino acids. At that 819 time, no experimental data were available to quantify the effect of disruption of soil 820 by cultivation on mineralisation. Our approach now provides means to quantify the 821 effect of physical protection and loss of physical protection on SOM decomposition. 822 A comparison between RothC and the model of physical protection of Hassink 823 and Whitmore (1997) had shown that both models perform similar at soils under 824 arable conditions (Hassink and Whitmore, 1997). The model of Hassink and 825 Whitmore (1997) is based on the adsorption and desorption kinetics of SOM particles 826 to clay surfaces which is also implicitly included in the RothC model. However, these 827 dynamics do not explain the loss of C due to the disruption of soil aggregates. 828 Our results are in good agreement with recent studies on SOM dynamics that 829 have focused on the biological and physiochemical processes and control of SOM 830 stabilisation and turnover. Instead of using definitions based on chemical fractionation 831 techniques research has moved on to assessing the location of OM in the soil structure 832 using physical fractionation methods (Koegel-Knabner, 2006). It has been proposed 833 by several authors that SOM turnover might be dominated by the location of SOM in 834 the soil aggregates rather than its chemical recalcitrance (Van Veen and Paul, 1981; 835 Balesdent, 1996; Six et al., 2000). 836 Our simple approach agrees with the conceptual model of soil C stabilisation 837 developed by Six et al. (2002). He proposes that SOM turnover can be divided into 838 three general pools: an unprotected pool which would be represented by the RPM

pool, a physically protected pool which would be represented by the silt-humus pool

840 and a bio-chemically protected soil C pool which would be represented by the clay-

841 humus and IOM pool. However, the quantitative description and parameterisation of

842	such a model would be far too data extensive for the current application. The major
843	advantage of our simple approach is that it does not require any more data input than
844	the current model and would not compromise its regional, national and global
845	applicability.
846	In addition, our study has shown that the combination of ¹³ C abundance with
847	SOM particle-size fractionation techniques is an excellent tool for evaluating the
848	performance of a SOM model under land use change conditions. It allowed the
849	structural reasons for the model not providing good simulations of soil C changes
850	after these land use change to be identified. It also provided a valuable tool for
851	developing and testing a new implementation of physically protected C.
852	Our approach makes model pools measurable. This is a major step forward in
853	the evaluation of the different, and up to now, conceptual model pools.
854	
855	Acknowledgements
856	
857	We thank Manuel Martin, Stéphanie Jalabert and Dominique Arrouays for their help
858	classifying the soil type at the French chronosequence site in the FAO soil type
859	classification framework. We thank the European Union for funding this research
860	through the AfricaNUANCES Project (contract no. INCO-CT-2004-003729). We also
861	like to thank the reviewers of the first draft for their constructive comments.
862	
863	References
864	Allen, J.C., 1985. Soil response to forest clearing in the United States and the tropics:
865	Geological and biological factors. Biotropica 17(1), 15-27.

866	Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration -
867	Guidelines for computing crop water requirements. FAO Irrigation and
868	drainage paper 56, FAO, Rome.
869	Arrouays, D., Pelissier, P., 1994. Changes in carbon storage in temperate humic
870	loamy soils after forest clearing and continuous corn cropping in France. Plant
871	and Soil 160(2), 215-223.
872	Balesdent, J., 1996. The significance of organic separates to carbon dynamics and its
873	modelling in some cultivated soils. European Journal of Soil Science 47(4),
874	485-493.
875	Balesdent, J., Besnard, E., Arrouays, D., Chenu, C., 1998. The dynamics of carbon in
876	particle-size fractions of soil in a forest-cultivation sequence. Plant and Soil
877	201, 49-57.
878	Balesdent, J., Chenu, C., Balabane, M., 2000. Relationship of soil organic matter
879	dynamics to physical protection and tillage. Soil and Tillage Research 53(3-4),
880	215-230.
881	Balesdent, J., Mariotti, A., 1987. Natural ¹³ C abundance as a tracer for studies of soil
882	organic matter dynamics. Soil Biology and Biochemistry 19(1), 25-30.
883	Balesdent, J., Wagner, G.H., Mariotti, A., 1988. Soil organic matter in long-term field
884	experiments as revealed by carbon-13 natural abundance. Soil Science Society
885	of American Journal 52, 118-124.
886	Batjes, N.H., 2002. Soil parameter estimates for the soil types of the world for use in
887	global and reginal modelling (Version 2.1; July 2002). ISRIC Report 2002/02c
888	[Available on-line at http://www.isric.org]. International Food Policy Research
889	Institue (IFPRI) and International Soil Reference and Information Centre
890	(ISTRIC), Wageningen.

891	Brown, S., Anderson, J.M., Woomer, P.L., Swift, M.J., Barrios, E., 1994. Soil
892	biological processes in tropical ecosystems. In: Woomer, P.L., Swift, M.J.
893	(Eds.), The biological management of tropical soil fertility. John Wiley,
894	Chichester, 15-46
895	Cerri, C.E.P., Easter, M., Paustian, K., Killian, K., Coleman, K., Bernoux, M.,
896	Falloon, P., Powlson, D.S., Batjes, N., Milne, E., Cerri, C.C., 2007. Simulating
897	SOC changes in 11 land use change chronosequences from the Brazilian
898	Amazon with RothC and Century models. Agriculture, Ecosystems and
899	Environment 122(1), 46-57.
900	Coleman, K., Jenkinson, D.S., 1999. RothC-26.3: A model for the turnover of carbon
901	in soil - Model description and Windows user guide. IACR-Rothamsted.
902	Coleman, K., Jenkinson, D.S., Crocker, G.J., Grace, P.R., Klir, J., Korschens, M.,
903	Poulton, P.R., Richter, D.D., 1997. Simulating trends in soil organic carbon in
904	long-term experiments using RothC-26.3. Geoderma 81(1-2), 29-44.
905	Coleman, K.W., Jenkinson, D.S., 1996. RothC-26.3 - A model for the turnover of
906	carbon in soil. In: Powlson, D.S., Smith, P., Smith, J. (Eds.), Evaluation of soil
907	organic matter models using existing long-term datasets, 38, NATO ASI
908	Series I. Springer-Verlag, Heidelberg, 237-246.
909	Denef, K., Zotarelli, L., Boddey, R.M., Six, J., 2007. Microaggregate-associated
910	carbon as a diagnostic fraction for management-induced changes in soil
911	organic carbon in two Oxisols. Soil Biology and Biochemistry 39(5), 1165-
912	1172.
913	Desanker, P.V., Frost, P.G.H., Frost, C.O., Justice, C.O., Scholes, R.J.e., 1997.
914	Miombo Network: Framework for a Terrestrial Transect Study of Land-Use

915	and Land-Cover Change in the Miombo Ecosystems of Central Africa.
916	Stockholm, Sweden.
917	Desjardins, T., Andreux, F., Volkoff, B., Cerri, C.C., 1994. Organic carbon and ¹³ C
918	contents in soils and soil size-fractions, and their changes due to deforestation
919	and pasture installation in eastern Amazonia. Geoderma 61, 103-118.
920	Diels, J., Vanlauwe, B., Van der Meersch, M.K., Sanginga, N., Merckx, R., 2004.
921	Long-term soil organic carbon dynamics in a subhumid tropical climate: 13C
922	data in mixed C3/C4 cropping and modeling with RothC. Soil Biology and
923	Biochemistry 36(11), 1739-1750.
924	Doorenbos, J., Kassam, A.H., Bentvelsen, C.L.M., Branscheid, V., Plusjé, J.M.G.A.,
925	Smith, M., Uittenbogaard, G.O., Van Der Wal, H.K., 1986. Yield response to
926	water. FAO Irrigation and Drainage Paper 33,
927	Falloon, P., Smith, P., Coleman, K., Marshall, S., 1998. Estimating the size of the
928	inert organic matter pool from total soil organic carbon content for use in the
929	Rothamsted carbon model. Soil Biology and Biochemistry 30, 1207-1211.
930	Falloon, P., Smith, P., Coleman, K., Marshall, S., 2000. How important is inert
931	organic matter for predictive soil carbon modelling using the Rothamsted
932	carbon model? Soil Biology and Biochemistry 32(3), 433-436.
933	Falloon, P., 2001. Large scale spatial modelling of soil organic matter dynamics. PhD
934	Thesis, School of Life and Environmental Sciences, University of Nottingham,
935	UK.
936	Frost, P., 1996. The ecology of miombo woodlands. In: Campbell, B. (Ed.), The
937	Miombo in Transition: Woodlands and Welfare in Africa. CIFOR, Bogor, 11-
938	57.

939	Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta
940	analysis. Global Change Biology 8(4), 345-360.
941	Hassink, J., A. P. Whitmore, 1997. A model of the physical protection of organic
942	matter in soils. Soil Science Society of American Journal 61, 131-139.
943	Houghton, R.A., 1999. The annual net flux of carbon to the atmosphere from changes
944	in land use 1850-1990. Tellus B 51, 298-313.
945	Houghton, R.A., 2003. Revised estimates of the annual net flux of carbon to the
946	atmosphere from changes in land use and land management 1850-2000. Tellus
947	B 55(2), 378-390.
948	IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of
949	Working Group I to the Fourth Assessment Report of the Intergovernmental
950	Panel on Climate Change. Solomon, S., Qin, M.M. D., Chen, Z., Marquis, M.,
951	Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Cambridge University Press,
952	Cambridge, United Kingdom and New York, NY, USA.
953	[Please use the full list of authors, et al.]Janik, L., Spouncer, L., et al., 2002.
954	Sensitivity analysis of the RothC soil carbon model (ver. 26.3 Excel). National
955	Carbon Accounting System Technical Report 30. Australian Greenhouse
956	Office, CSIRO Land and Water and Mathematical and Information Sciences.
957	Canberra, Australia.
958	Jastrow, J.D., Miller, R.M., Boutton, T.W., 1996. Carbon dynamics of aggregate-
959	associated organic matter estimated by carbon-13 natural abundance. Soil
960	Science Society of American Journal 60(3), 801-807.
961	Jenkinson, D.S., 1990. The turnover of organic matter and nitrogen in soil.
962	Philosiophical Transactions: Biological Sciences 329, 361-367.

963	Jenkinson, D.S., Adams, D.E., Wild, A., 1991. Model estimates of CO ₂ emissions
964	from soil in response to global warming. Nature 351(6324), 304-306.
965	Jenkinson, D.S., Harkness, D.D., Vance, E.D., Adams, D.E., Harrison, A.F., 1992.
966	Calculating net primary production and annual input of organic matter to soil
967	from the amount and radiocarbon content of soil organic matter. Soil Biology
968	and Biochemistry 24(4), 295-308.
969	Jenkinson, D.S., Hart, P.B.S., Rayner, J.H., Parry, L.C., 1987. Modelling the turnover
970	of organic matter in long-term experiments at Rothamsted. INTECOL Bulletin
971	15, 1-8.
972	Jenkinson, D.S., Meredith, J., Kinyamario, J.I., Warren, G.P., Wong, M.T.F.,
973	Harkness, D.D., Bol, R., Coleman, K., 1999. Estimating net primary
974	production from measurements made on soil organic matter. Ecology 80(8),
975	2762-2773.
976	Jenkinson, D.S., Rayner, J.H., 1977. The turnover of soil organic matter in some of
977	the Rothamsted classical experiments. Soil Science 123(5), 298-305.
978	Jones, P.G., Thornton, P.K., 2000. MarkSim: Software to Generate Daily Weather
979	Data for Latin America and Africa. Agronomy Journal 92(3), 445-453.
980	Kamoni, P.T., Gicheru, P.T., Wokabi, S.M., Easter, M., Milne, E., Coleman, K.,
981	Falloon, P., Paustian, K., Killian, K., Kihanda, F.M., 2007. Evaluation of two
982	soil carbon models using two Kenyan long term experimental datasets.
983	Agriculture, Ecosystems and Environment 122(1), 95-104.
984	Knisel, W. G., 1980. CREAMS: a filed scale model for chemicals, runoff and erosion
985	from agricultural management systems. Conservation Report No. 26.
986	Washington D.C., U.S. Department of Agriculture, 640 pp.

987	Lal, R., 2003. Global potential of soil carbon sequestration to mitigate the greenhouse
988	effect. Critical Reviews in Plant Sciences 22, 151-184.
989	Martin, A., Mariotti, A., Balesdent, J., Lavelle, P., Vuattoux, R., 1990. Estimate of
990	organic matter turnover rate in a savanna soil by ¹³ C natural abundance
991	measurements. Soil Biology and Biochemistry 22(4), 517-523.
992	Mitchell, T.D., Jones, P.D., 2005. An improved method of constructing a database of
993	monthly climate observations and associated high-resolution grids.
994	International Journal of Climatology 25(6), 693-712.
995	Molina, J.A.E., Clapp, C.E., Linden, D.R., Allmaras, R.R., Layese, M.F., Dowdy,
996	R.H., Cheng, H.H., 2001. Modeling the incorporation of corn (Zea mays L.)
997	carbon from roots and rhizodeposition into soil organic matter. Soil Biology
998	and Biochemistry 33(1), 83-92.
999	Murty, D., Kirschbaum, M.U.F., Mcmurtrie, R.E., Mcgilvray, H., 2002. Does
1000	conversion of forest to agricultural land change soil carbon and nitrogen? a
1001	review of the literature. Global Change Biology 8(2), 105-123.
1002	New, M., Lister, D., Hulme, M., Makin, I., 2002. A high-resolution data set of surface
1003	climate over global areas. Climate Research 21, 1-25.
1004	Niklaus, P.A., Falloon, P., 2006. Estimating soil carbon sequestration under elevated
1005	CO2 by combining carbon isotope labelling with soil carbon cycle modelling.
1006	Global Change Biology 12(10), 1909-1921.
1007	Paul, S., Veldkamp, E., Flessa, H., 2008. Soil organic carbon in density fractions of
1008	tropical soils under forest - pasture - secondary forest land use changes.
1009	European Journal of Soil Science 59, 359-371.

1010	Running.	S.W.,	Nemani.	R.R.,	Heinsch.	F.A.,	Zhao.	М	Reeves.	М.,	Hashimoto.	. H
			,	,								, ,

- 1011 2004. A continuous satellite-derived measure of global terrestrial primary
- 1012 production. BioScience 54(6), 547-560.
- 1013 Schwendenmann, L., Pendall, E., 2006. Effects of forest conversion into grassland on
- 1014 soil aggregate structure and carbon storage in Panama: Evidence from soil
- 1015 carbon fractionation and stable isotopes. Plant and Soil 288(1), 217-232.
- 1016 Shirato, Y., Paisancharoen, K., Sangtong, P., Nakviro, C., Yokozawa, M., Matsumoto,
- 1017 N., 2005. Testing the Rothamsted Carbon Model against data from long-term
- 1018 experiments on upland soils in Thailand. European Journal of Soil Science 56,1019 179-188.
- Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil
 organic matter: Implications for C-saturation of soils. Plant and Soil 241(2),
- 1022 155-176.
- 1023 Six, J., Paustian, K., Elliott, E.T., Combrink, C., 2000. Soil structure and organic
- matter: I. distribution of aggregate-size classes and aggregate-associated
 carbon. Soil Science Society of Amerian Journal 64, 681-689.
- 1026 Skjemstad, J.O., Spouncer, L.R., Cowie, B., Swift, R.S., 2004. Calibration of the
- 1027 Rothamsted organic carbon turnover model (RothC ver. 26.3), using
- 1028 measurable organic carbon pools. Australian Journal of Soil Research 42, 79-1029 88.
- 1030 Smith, B.N., Epstein, S., 1971. Two categories of ¹³C/¹²C ratios for higher plants.
- 1031 Plant Physiology 47(3), 380-384.
- 1032 Smith, J.U., Smith, P., Coleman, K., Hargreaves, P.R., Macdonald, A.J., 2002. Using
- 1033 dynamic simulation models and the 'Dot-to-Dot' method to determine the

1034	optimum sampling times in field trials. Soil Use and Management 18, 370-
1035	375.
1036	Smith, J., Smith, P., 2007. Environmental Modelling. An Introduction. Oxford
1037	University Press.
1038	Smith, J., Smith, P., Addiscott, T., 1996. Quantitative methods to evaluate and
1039	compare Soil Organic Matter (SOM) models. In: Powlson, D.S., Smith, P.,
1040	Smith, J. (Eds.), Evaluating Soil Organic Matter Models, 38, NATO ASI
1041	series I, Global environmental change. Springer, Berlin-Heidelberg.
1042	Smith, P., Falloon, P., Coleman, K., Smith, J., Piccolo, M.C., Cerri, C.C., Bernoux,
1043	M., Jenkinson, D.S., Ingram, J.S.I., Szabó, J., Pástor, L., 2000. Modeling soil
1044	carbon dynamics in tropical ecosystems. In: Lal, R., Kimble, J.M., Stewart,
1045	B.A. (Eds.), Global climate change and tropical ecosystems. CRC Press,
1046	London, 341-364.
1047	Smith, P., Smith, J.U., Powlson, D.S., Coleman, K., Jenkinson, D.S., McGill, W.B.,
1048	Arah, J.R.M., Thornley, J.H.M., Chertov, O.G., Komarov, A.S., Franko, U.,
1049	Frolking, S., Li, C., Jensen, L.S., Mueller, T., Kelly, R.H., Parton, W.J., Klein-
1050	Gunnewiek, H., Whitmore, A.P., Molina, J.A.E., 1997. A comparison of the
1051	performance of nine soil organic matter models using datasets from seven
1052	long-term experiments. Geoderma 81(1-2), 153-225.
1053	Sorensen, L.H., 1975. The influence of clay on the rate of decay of amino acid
1054	metabolites synthesised in soils during decomposition of cellulose. Soil
1055	Biology and Biochemistry 7, 171-177.
1056	Townsend, A.R., Vitousek, P.M., Trumbore, S.E., 1995. Soil organic matter dynamics
1057	along gradients in temperature and land use on the Island of Hawaii. Ecology
1058	76(3), 721-733.

- 1059 Van Oost, K., T. A. Quine, Govers, G., De Gryze, S., Six, J., Harden, J. W., Ritchie, J.
- 1060 C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V., da Silva, J. R.
- Marques, Merckx, R., 2007. The impact of agricultural soil erosion on theglobal carbon cycle. Science 318(5850), 626-629.
- 1063 Van Veen, J.A., Paul, E.A., 1981. Organic carbon dynamics in grassland soils. I.
- Background information and computer simulation. Canadian Journal of SoilScience 61, 185-201.
- 1066 Vitorello, V.A., Cerri, C.C., Andreux, F., Feller, C., Victória, R.L., 1989. Organic
- 1067 matter and natural carbon-13 distribution in forested and cultivated oxisols.

1068 Soil Science Society of American Journal 53, 773-778.

- 1069 Zianis, D., Muukkonen, P., Makipaa, R., Mencuccini, M., 2005. Biomass and stem
- 1070 volume equations for tree species in Europe. Silva Fennica Monographs 4, 1-
- 1071 63.
- 1072 [Please use the full list of authors, et al.]Zimmermann, M., Leifeld, J., et al., 2007.
- 1073 Measured soil organic matter fractions can be related to pools in the RothC
- 1074 model. European Journal of Soil Science 58(3), 658-667.
- 1075 Zingore, S., Manyame, C., Nyamugafata, P., Giller, K.E., 2005. Long-term changes in
- 1076 organic matter of woodland soils cleared for arable cropping in Zimbabwe.
- 1077 European Journal of Soil Science 56(6), 727-736.

Figure captions

Figure 1: Measured (squares plus one standard error) and default simulated total C stock changes (solid line) at the four chronosequence sites.

Figure 2: Measured forest derived C (crosses) and maize derived C (squares) and simulated forest derived C (dashed line) and maize derived C (dotted line) at the four chronosequence sites. IOM pool calculated using the model default Falloon equation (Falloon et al., 1998) (dashed-dotted line).

Figure 3: Measured forest derived C (crosses) and simulated forest derived C (dashed line) at the three African chronosequence sites. IOM pool calculated using the model default Falloon equation (a) and IOM pool adjusted to values given by Zingore et al. (2005) (b) (dashed-dotted line).

Figure 4: Measured forest derived C (crosses) and maize derived C (squares) and simulated forest derived C (solid line), simulated forest derived C when accounting for ersion (dashed line), simulated maize derived C (dotted line) and simulated maize derived C when accounting for erosion (dotted line) at Mafungautsi. Please note that dotted lines for the simulation of maize derived C are visually not distinguishable and are therefore plotted in the same style.

Figure 5: Simulated total C (dashed lines) and the sum of the C in the HUM, BIO, DPM and IOM pool (dotted line) for forest and maize derived C, the difference

between the two lines denotes the C in the RPM pool; total C measured (squares) and C in the soil size fraction <50 µm (stars).

Figure 6: Simulated total C (dashed lines), the sum of the C in the silt-humus, clayhumus, BIO, DPM and IOM pool (dotted line) and the sum of C in the clay-humus, BIO, DPM and IOM pool (solid line) for forest and maize derived C, the difference between the dashed and the dotted lines denotes the C in the RPM pool and the difference between the dotted and the solid line denotes the C in the silt-humus pool; total C measured (squares), C in the soil size fraction <50 μ m (stars) and C in the soil size fraction 0–2 μ m (plus).

Figure 7: RothC model structure after introducing the silt-humus pool

Figure 8: Graphic presentation of the uncertainty analysis results. Solid black lines show average, minimum and maximum simulation curves of 500 simulations. Grey dotted line shows the default simulations. Insets: Histograms depict the distribution of results at the last time step of the simulation at each site, respectively. The grey dotted line shows the default simulation and the grey solid line shows the mean of the distribution.

Tables

Table 1: Model input data

Sites / Parameters	Mafungautsi	Masvingo	Chikwaka	Pyrenean
Clay content (%)	3	9.5	33.5	14.7 (16.1)
Horizon depth (cm)	20	20	20	30
SOC $(g C m^{-2})$	1950	2540	4190	22173
$IOM (g C m^{-2})$	144	173	346	2300
Plant input (maize) (g C	12	_ ^a	_ ^a	500
$m^{-2} year^{-1}$)				
Months of maize	November -	November -	November -	June - August
cultivation	April	April	April	

^a Values are generated by a backwards model run.

				1
	Mafungautsi	Masvingo	Chikwaka	Pyrenean
Yearly mean	21.25	20.43	19.07	11.12
average temp				
(°C)				
Minimum	20.83	19.39	18.53	10.6
yearly mean				
average temp				
(°C)				
Maximum	21.5	20.9	19.43	11.6
yearly mean				
average temp				
(°C)				
Yearly mean	777.1	636.1	865.7	1092.8
sum of				
precipitation				
(mm)				
Minimum of	662	610	768.4	934.1
yearly sum	\cap			
(mm)				
Maximum of	1031	662.2	977.0	1251.5
yearly sum				
(mm)				
FAO Soil	Luvic	Hapilic Lixisol	Chromic Luvisol	Vermic
type	Arenosol			Haplumbrept ¹
Mean clay	5.25	10.94	23.66	14.7
(%)				
Minimum	1	4	10	9
clay (%)				
Maximum	12	18	34	21
$dov(\mathcal{O}_{0})$				

Table 2: Ranges of climate data and clay content for uncertainty a	nalysis
--	---------

clay (%) ¹ US soil taxonomy

Table 3: Results of statistical analysis for default model simulations of maizederived C.

Statistical Parameter	Mafungautsi	Masvingo	Chikwaka	Pyrenean
R	0.69	-0.01	0.73	1.00
RMS (g C m ⁻²)	21	202	204	610
$M (\mathbf{g} \mathbf{C} \mathbf{m}^2)$	-15	127	123	-441

Table 4: IOM values using Falloon-Regression and IOM values of upper and

lower 95% confidence interval (C.I.) levels (Falloon et al., 2000).

Site	IOM - 95% C.I. (g C m ⁻²)	$\frac{IOM}{(g C m^2)}$	IOM + 95% C.I. (g C m ⁻²)
Mafungautsi	16	860	1335
Masvingo	18	800	1681
Chikwaka	29	1430	4079
Pyrenean	113	2300	46700

Table 5: Results of statistical test for the simulation of forest and maize derived

C at the Pyrenean site using the implementation of the silt-humus pool

Statistical Parameter	Total forest C	Silt forest C	Clay forest C	Total maize C	Silt maize	Clay maize C
	\land \lor				С	
R	1.00^{1}	1.00^{1}	0.86	0.99	0.99	0.99
$RMS (g C m^{-2})$	398	1506	2067	147	129	66
$M (g C m^{-2})$	-144	-1488	-1698	-110	52	-10
	P					

Table 6: Summary of descriptive statistics of the uncertainty analysis results for

Site	Forest plant input (g C m ⁻² year ⁻¹)			Maize plant input (g C m ⁻² year ⁻¹)		
	Average	Min	Max	Average	Min	max
Mafungautsi	165	148	186	10	9	11
Masvingo	176	154	204	35	30	41
Chikwaka	266	232	305	68	59	79
Pyrenean	899	744	1103	-	-	-

forest and maize plant input values

Figures

Figure 1

Figure 2

Figure 3

Figure 8

years under cultivation

